CHAPTER 11 APPENDIX

TABLES AND FIGURES

Tables

Table 11.1 Runoff Coefficients for Rational Method

Land Use or Surface Characteristics	Percent Impervious	Storm 5	Frequency 10	, years 100
Business: Commercial Areas Neighborhood Areas	95 65	.88 .65	.90 .70	.93 .80
Residential: Single-Family Multi-Unit (detached) Multi-Unit (attached) 1/2 Acre Lot or Larger Apartments	40 50 70 30 70	.45 .55 .70 .40 .70	.50 .60 .70 .45 .70	.70 .75 .80 .65 .80
Industrial: Light Areas Heavy Areas	80 90	.80 .80	.80 .85	.85 .90
Parks, Cemeteries:	7	.25	.35	.60
Playgrounds:	13	.30	.40	.70
Schools:	50	.55	.60	.75
Railroad Yard Areas:	40	.45	.50	.70
Undeveloped Areas: Historic Flow Analysis Greenbelts, Agricultural	2	.20	.30	.60
Offsite Flow Analysis (when land use not defined)	45	.50	.55	.72
Streets: Paved Gravel	100 7	.88 .25	.90 .35	.93 .65
Drives and Walks:	96	.87	.90	.92
Roofs:	90	.85	.90	.90
Lawns, Sandy Soil:	0	.10	.20	.50
Lawns, Clay Soil:	0	.20	.30	.60

NOTE: These Rational Formula coefficients do not apply for larger basins where the time-of-concentration exceeds 60 minutes.

REFERENCE: Urban Drainage and Flood Control District Rational Formula Procedure, Hydrology Research Program, August 1979.

Table 11.2

Roughness Coefficients (Manning's n) for Sheet Flow

Surface Description	n ¹
Smooth surfaces (concrete, asphalt, gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils: Residue cover ≤ 20% Residue cover > 20% Grass: Short grass prairie Dense grasses²	0.06 0.17 0.15 0.24
Range (natural)	0.13
Woods: ³ Light underbrush Dense underbrush	0.40 0.80

¹The n values are a composite of information compiled by Engman (1986).

²Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

³When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Table 11.3Reduction Factors to Apply to Inlets

Condition	Inlet Type	% of Theoretical Capacity Allowed
Sump	Grated	50%
Sump	Combination	65%
Continuous Grade	Deflector	75%
Continuous Grade	Longitudinal Bar Grate incorporation recessed transver bars	•
Continuous Grade	Combination	110% of that listed for type of grate utilized
Sump or Continuous Grade	Curb Opening L = 3' L = 6' L = 8'	80% 88% 90%
	L = 0 L = 10' L = 15'	92% 95%

 TABLE 11.4

 BMP Pollutant Removal Ranges for Stormwater Runoff and Most Probable Range for BMPs

Type of BMP	(1)	TSS	ТР	TN	ΤZ	TPb	BOD	Bacteria
Grass Buffer	LRR:	10–50	0–30	0–10	0–10	N/A	N/A	N/A
	EPR	10–20	0–10	0–10	0–10	N/A	N/A	N/A
Grass Swale	LRR:	20–60	0–40	0–30	0–40	N/A	N/A	N/A
	EPR	20–40	0–15	0–15	0–20	N/A	N/A	N/A
Modular Block Porous Pavement	LRR:	80–95	65	75–85	98	80	80	N/A
	EPR	70–90	40–55	10–20	40–80	60–70	N/A	N/A
Porous Pavement Detention	LRR:	8–96	5–92	-130–85	10–98	60–80	60–80	N/A
	EPR	70–90	40–55	10–20	40–80	60–70	N/A	N/A
Porous Landscape Detention	LRR:	8–96	5–82	-100–85	10–98	60–90	60–80	N/A
	EPR	70–90	40–55	20–55	50–80	60–80	N/A	N/A
Extended Detention Basin	LRR:	50–70	10–20	10–20	30–60	75–90	N/A	50–90
	EPR	55–75	45–55	10–20	30–60	55–80	N/A	N/A
Constructed Wetland Basin	LRR:	40–94	-4–90	21	-29–82	27–94	18	N/A
	EPR	50–60	40–80	20–50	30–60	40–80	N/A	N/A
Retention Pond	LRR:	70–91	0–79	0–80	0–71	9–95	0–69	N/A
	EPR	80–90	45–70	20–60	20–60	60–80	N/A	N/A
Sand Filter Extended Detention	LRR:	8–96	5–92	-129–84	10–98	6D-80	60–80	N/A
	EPR	80–90	45–55	35–55	50–80	60–80	60–80	N/A
Constructed Wetland Channel*	LRR:	20–60	0–40	0–30	0–40	N/A	N/A	N/A
	EPR	30–50	20–40	10–30	20–40	20–40	N/A	N/A

(1) LRR Literature reported range, **EPR**-expected probable range of annual performance by BMPs. N/A Insufficient data to make an assessment.

* The **EPR** rates for a Constructed Wetland Channel assume the wetland surface area is equal or greater than 0.5% of the tributary total impervious area.

Required Action	Maintenance Objective	Frequency of Action
Lawn Mowing	Maintain a dense grass cover at a recommended length of 2 to 4 inches. Collect and dispose of cuttings offsite or use a mulching mower.	Routine—as needed or recommended by inspection
Lawn care	Use the minimum amounts of biodegradable, nontoxic fertilizers and herbicides needed to maintain dense grass cover, free of weeds. Reseed and patch damaged areas	Routine—as needed.
Irrigation	Adjust the timing sequence and water cover to maintain the required minimum soil moisture for dense grass growth. Do not overwater	As needed.
Litter removal	Remove litter and debris to prevent gully development, enhance aesthetics, and prevent floatables from being washed offsite.	Routine—as needed by inspection.
Inspections	Inspect irrigation, turf grass density, flow distribution, gully development, and traces of pedestrian or vehicular traffic and request repairs as needed.	Annually and after each major storm (that is, larger than 0.75 inch in precipitation).
Turf replacement	To lower the turf below the surface of the adjacent pavement, use a level flow spreader so that sheet flow is not blocked and will not cause water to back up onto the upstream pavement.	As needed when water ponding becomes too high or too frequent a problem. The need for turf replacemen will be higher if the pavement is sanded in winter to improve tire traction on ice. Otherwise, expect replacement once every 5 to 15 years.

Irrigated Grass Buffer Strip Ma	aintenance Considerations
TABLE 11.5	

 TABLE 11.6
 Grass-Lined Swale Maintenance Considerations

Required Action	Maintenance Objective	Frequency of Action
Lawn Mowing and Lawn Care	Maintain irrigated grass at 2 to 4 inches tall and nonirrigated native grass at 6 to 8 inches tall. Collect cuttings and dispose of them offsite or use a mulching mower.	Routine—as needed.
Debris and Litter Removal	Keep the area clean for aesthetic reasons, which also reduces floatables being flushed downstream.	Routine—as needed by inspection, but no less than two times per year.
Sediment Removal	Remove accumulated sediment near culverts and in channels to maintain flow capacity. Replace the grass areas damaged in the process	Routine—as needed by inspection. Estimate the need to remove sediment from 3 to 10 percent of total length per year, as determined by annual inspection.
Grass Reseeding and Mulching	Maintain a healthy dense grass in channel and side slope.	Nonroutine—as needed by annual inspection.
Inspections	Check the grass for uniformity of cover, sediment accumulation in the swale, and near culverts.	Routine—annual inspection is suggested.

 TABLE 11.7

 Porous Landscape Detention Maintenance Considerations

Required Action	Maintenance Objectives	Frequency
Lawn mowing and vegetative care	Occasional mowing of grasses and weed removal to limit unwanted vegetation. Maintain irrigated turf grass as 2 to 4 inches. tall and nonirrigated native turf grasses at 4 to 6 inches.	Routine—depending on aesthetic requirements.
Debris and litter removal	Remove debris and litter from detention area to minimize clogging of the sand media.	Routine—depending on aesthetic requirements
Landscaping removal and replacement	The sandy loam turf and landscaping layer will clog with time. This layer will need to be removed and replaced, along with all turf and other vegetation growing on the surface, to rehabilitate infiltration rates.	Every 5 to 10 years; depending on infiltration rates needed to drain the WQCV in 12 hours or less. May need to do it more frequently if exfiltration rates are too low to achieve this goal.
Inspections	Inspect detention area to determine if the sand media is allowing acceptable infiltration	Routine—biannual inspection of hydraulic performance

 TABLE 11.8

 Extended Detention Basin Maintenance Considerations

Required Action	Maintenance Objective	Frequency of Action
Lawn mowing and lawn care	Occasional mowing to limit unwanted vegetation. Maintain irrigated turf grass as 2 to 4 inches tall and nonirrigated native turf grasses at 4 to 6 inches.	Routine—depending on aesthetic requirements.
Debris and litter removal	Remove debris and litter from the entire pond to minimize outlet clogging and improve aesthetics.	Routine—including just before annual storm seasons (that is, April and May) and following significant rainfall events.
Erosion and sediment control	Repair and revegetate eroded areas in the basin and channels.	Nonroutine—periodic and repair as necessary based on inspection.
Structural	Repair pond inlets, outlets, forebays, low flow channel liners, and energy dissipators whenever damage is discovered.	Nonroutine—repair as needed based on regular inspections.
Inspections	Inspect basins to insure that the basin continues to function as initially intended. Examine the outlet for clogging, erosion, slumping, excessive sedimentation levels, overgrowth, embankment and spillway integrity, and damage to any structural element.	Routine—annual inspection of hydraulic and structural facilities. Also check for obvious problems during routine maintenance visits, especially for plugging of outlets.
Nuisance control	Address odor, insects, and overgrowth issues associated with stagnant or standing water in the bottom zone.	Nonroutine—handle as necessary per inspection or local complaints.
Sediment removal	Remove accumulated sediment from the forebay, micro-pool, and the bottom of the basin.	Nonroutine—performed when sediment accumulation occupies 20 percent of the WQCV. This may vary considerably, but expect to do this every 10 to 20 years, as necessary per inspection if no construction activities take place in the tributary watershed. More often if they do. The forebay and the micro-pool will require more frequent cleanout than other areas of the basin, say every 1 or 2 years.

TABLE 11.9

Sand Filter Detention Basin Maintenance Considerations	

Required Action	Maintenance Objectives	Frequency
Debris and litter removal	Remove debris and litter from detention area to minimize clogging of the sand media.	Routine—depending on aesthetic requirements
Landscaping removal and replacement	If the sand filter is covered with rock mulch, bluegrass, or other landscaping covers, the cover must be removed to allow access to the sand media. Replace landscaping cover after maintenance of sand media is complete.	Every 2 to 5 years
Scarify filter surface	Scarify top 3 to 5 inches by raking the filter's surface.	Once per year or when needed to promote drainage.
Sand filter removal	Remove the top 3 inches of sand from the sand filter. After a third removal, backfill with 9 inches of new sand to return the sand depth to 18 inches. Minimum sand depth is 12 inches.	If no construction activities take place in the tributary watershed, every 2 to 5 years, depending on observed drain times, namely when it takes more than 24 hours to empty a 3-foot deep pool. Otherwise more often. Expect to clean out forebay every 1 to 5 years.
Inspections	Inspect detention area to determine if the sand media is allowing acceptable infiltration.	Routine—biannual inspection of hydraulic performance, one after a significant rainfall.

TABLE 11.10Wetland Pool Area Distribution

Components	Percent of Permanent Pool Surface Area	Water Design Depth
Forebay, outlet and free water surface areas	30% to 50%	2 to 4 feet deep
Wetland zones with emergent vegetation	56% to 70%	6 to 12 inches deep*

*One-third to one-half of this zone should be 6 inches deep.

TABLE 11.11

O 1 1 1 1 1	M <i>I</i>	NA . 1 . 1	O
Constructed	vvetiands	Maintenance	Considerations

Required Action	Maintenance Objective	Frequency of Action
Lawn mowing and lawn care	Mow occasionally to limit unwanted vegetation. Maintain irrigated turf grass at 2 to 4 inches tall and nonirrigated native turf grasses at 4 to 6 inches.	Routine—depending on aesthetic requirements.
Debris and litter removal	Remove debris and litter from entire pond to minimize outlet clogging and aesthetics. Include removal of floatable material from the pond's surface.	Routine —including just before annual storm seasons (that is, in April and May) and following significant rainfall events.
Sediment removal	Remove accumulated sediment and muck along with much of the wetland growth. Reestablish growth zone depths and spatial distribution. Revegetate with original wetland species.	Nonroutine—every 10 to 20 years as needed by inspection if no construction activities take place in the tributary watershed. More often if they do. Expect to clean out forebay every 1 to 5 years.
Aquatic plant harvesting	Cut and remove plants growing in wetland (such as cattails and reeds) to remove nutrients permanently with manual work or specialized machinery.	Nonroutine until further evidence indicates such action would provide significant nutrient removal. In the meantime, perform this task once every 5 years or less frequently as needed to clean the wetland zone out.
Inspections	Observe inlet and outlet works for operability. Verify the structural integrity of all structural elements, slopes, and embankments.	Routine—at least once a year, preferably once during one rainfall event resulting in runoff.

TABLE 11.12 Recommended Tree and Shrub Spacing

	Tree Spacing (feet)	Shrub Spacing (feet)	Total Density (stems/acre)
Maximum	19	12	400
Average	12	8	1,000
Minimum	11	7	1,250

Source: Prince George's County, 1993.

TABLE 11.13A

Standardized WQCV Outlet Design Using Circular Openings (2" diameter maximum). Minimum Width (W_{conc.}) of Concrete Opening for a Well-Screen-Type Trash Rack. Requires minimum water depth below lowest perforation of 2' 4". See Figure 11.50b for Explanation of Terms.

Maximum Dia. of –	Width of Trash Rack Opening ($oldsymbol{W}_{ ext{conc.}}$) Per Column of Holes as a Function of Water Depth H						
Circular Opening (in.)	H=2.0'	H=3.0'	H=4.0'	H=5.0'	H=6.0'	Maximum Number of Columns	
≤ 0.25	3 in.	3 in.	3 in.	3 in.	3 in.	14	
≤ 0.50	3 in.	3 in.	3 in.	3 in.	3 in.	14	
≤ 0.75	3 in.	6 in.	6 in.	6 in.	6 in.	7	
≤ 1.00	6 in.	9 in.	9 in.	9 in.	9 in.	4	
≤ 1.25	9 in.	12 in.	12 in.	12 in.	15 in.	2	
≤ 1.50	12 in.	15 in.	18 in.	18 in.	18 in.	2	
≤ 1.75	18 in.	21 in.	21 in.	24 in.	24 in.	1	
≤ 2.00	21 in.	24 in.	27 in.	30 in.	30 in.	1	

TABLE 11.13B

Standardized WQCV Outlet Design Using 2" Diameter Circular Openings. US Filter™ Stainless Steel Well-Screen^{*} (or equal) Trash Rack Design Specification.

Max. Width of Opening	Screen #93 VEE Wire Slot Opening	Support Rod Type	Support Rod, On-Center Spacing	Total Screen Thickness	Carbon Steel Frame Type
9"	0.139	#156 VEE	3/4"	0.31"	$3/8" \times 1.0"$ flat bar
18"	0.139	TE .074" × .50"	1"	0.655"	$3/4" \times 1.0$ angle
24"	0.139	TE .074" ×.75"	1"	1.03"	1.0" \times 1½" angle
27"	0.139	TE .074" × .75"	1"	1.03"	1.0" x 1½" angle
30"	0.139	TE .074" × 1.0"	1"	1.155"	1¼" x ½" angle
36"	0.139	TE .074" × 1.0"	1"	1.155"	1¼" x 1½" angle
42"	0.139	TE .105" × 1.0"	1"	1.155"	1¼" x 1½" angle

*US Filter, St. Paul, Minnesota, USA

DESIGN EXAMPLE:

Given: A WQCV outlet with an orifice plate consisting of three columns of 5/8 in. (0.625 in) diameter openings. Water Depth H above the lowest orifice plate opening of 3.5 ft.

Solution: The dimensions within the mounting frame for a well screen trash rack are determined as follows.

Trash Rack Width: Given an orifice plate with 0.75 in. openings (i.e., rounded up from 5/8 in. actual diameter of the opening) and the Water Depth H = 4 ft (i.e., rounded up from 3.5 ft), Table 11.13a shows the minimum width for each column of openings is 6 in. Thus, the total trash rack width, W_{conc} , equals 3 columns × 6 in. = 18 in.

Trash Rack Height: Total trash rack height is the sum of the Water Depth H plus 2' (the height of the trash rack below the water depth; see Section A-A of Figure 11.50b). Thus, trash rack height equals 3'6" + 2' 0" = 66 in.

Dimensions Note: These trash rack dimensions are the minimum dimensions <u>within</u> the mounting frame. The trash rack mounting frame must be properly sized by a structural engineer taking into account the minimum trash rack dimensions, the intended method of fabrication, and the method of connection to the outlet structure.

Ordering Specifications: From Table 11.13b, select ordering specifications for an 18", or less, wide opening trash rack using US Filter (or equal) stainless steel well-screen with #93 VEE wire, 0.139" openings between wires, TE 0.074" \times .50" support rods on 1.0" on-center spacing, total screen thickness of 0.655", with $\frac{3}{4} \times 1.0$ " welded carbon steel frame.

 TABLE 11.14A

 Standardized WQCV Outlet Design Using 2" Height Rectangular Openings. Minimum Width (W_{opening}) of Opening for an

 Aluminum Bar Grate Trash Rack

Maximum Width W of 2" Height	Minimum Width of Trash Rack Opening as a Function of Water Dep					
Rectangular Opening (inches)	H=2.0 ft	H=3.0 ft	H=4.0 ft	H=5.0 ft	H=6.0 ft	Spacing of Bearing Bars, Cross Rods
< 2.0	2.0 ft	2.5 ft	2.5 ft	2.5 ft	3.0 ft	1-3/16", 2"
< 2.5	2.5 ft	3.0 ft	3.0 ft	3.5 ft	3.5 ft	1-3/16", 2"
< 3.0	3.0 ft	3.5 ft	3.5 ft	4.0 ft	4.0 ft	1-3/16", 2"
< 3.5	3.5 ft	4.0 ft	4.5 ft	4.5 ft	5.0 ft	1-3/16", 2"
< 4.0	3.5 ft	4.5 ft	5.0 ft	5.0 ft	5.5 ft	1-3/16", 2"
< 4.5	4.0 ft	4.5 ft	5.0 ft	5.5 ft	5.5 ft	1-3/16", 4"
< 5.0	4.0 ft	5.0 ft	5.5 ft	6.0 ft	6.0 ft	1-3/16", 4"
< 5.5	4.5 ft	5.5 ft	6.0 ft	6.5 ft	7.0 ft	1-3/16", 4"
< 6.0	5.0 ft	6.0 ft	6.5 ft	7.0 ft	7.5 ft	1-3/16", 4"
< 6.5	5.5 ft	6.5 ft	7.0 ft	7.5 ft	8.0 ft	1-3/16", 4"
< 7.0	6.0 ft	7.0 ft	7.5 ft	8.5 ft	8.5 ft	1-3/16", 4"
< 7.5	6.0 ft	7.5 ft	8.5 ft	9.0 ft	9.5 ft	1-3/16", 4"
< 8.0	6.5 ft	8.0 ft	9.0 ft	9.5 ft	10.0 ft	1-3/16", 4"
< 8.5	7.0 ft	8.5 ft	9.5 ft	10.0 ft	N/A	1-3/16", 4"
< 9.0	7.5 ft	9.0 ft	10.0 ft	N/A	N/A	1-3/16", 4"
< 9.5	8.0 ft	9.5 ft	N/A	N/A	N/A	1-3/16", 4"
< 10.0	8.5 ft	10.0 ft	N/A	N/A	N/A	1-3/16", 4"
< 10.5	8.5 ft	N/A	N/A	N/A	N/A	1-3/16", 4"
< 11.0	9.0 ft	N/A	N/A	N/A	N/A	1-3/16", 4"
< 11.5	9.5 ft	N/A	N/A	N/A	N/A	1-3/16", 4"
< 12.0	10.0 ft	N/A	N/A	N/A	N/A	1-3/16", 4"

TABLE 11.14B

Standardized WQCV Outlet Design Using 2" Height Rectangular Openings. Klemp™ KRP Series Aluminum_Bar Grate* (or equal) Trash Rack Design Specifications

Water Depth Above Lowest Opening, H	Minimum Bearing Bar Size, Bearing Bars Aligned Vertically
2.0 ft	1" × 3/16"
3.0 ft	1¼" × 3/16"
4.0 ft	1³¼" × 3/16"
5.0 ft	2" × 3/16"
6.0 ft	2¼" × 3/16"

*Klemp Corporation, Orem, Utah, USA

DESIGN EXAMPLE:

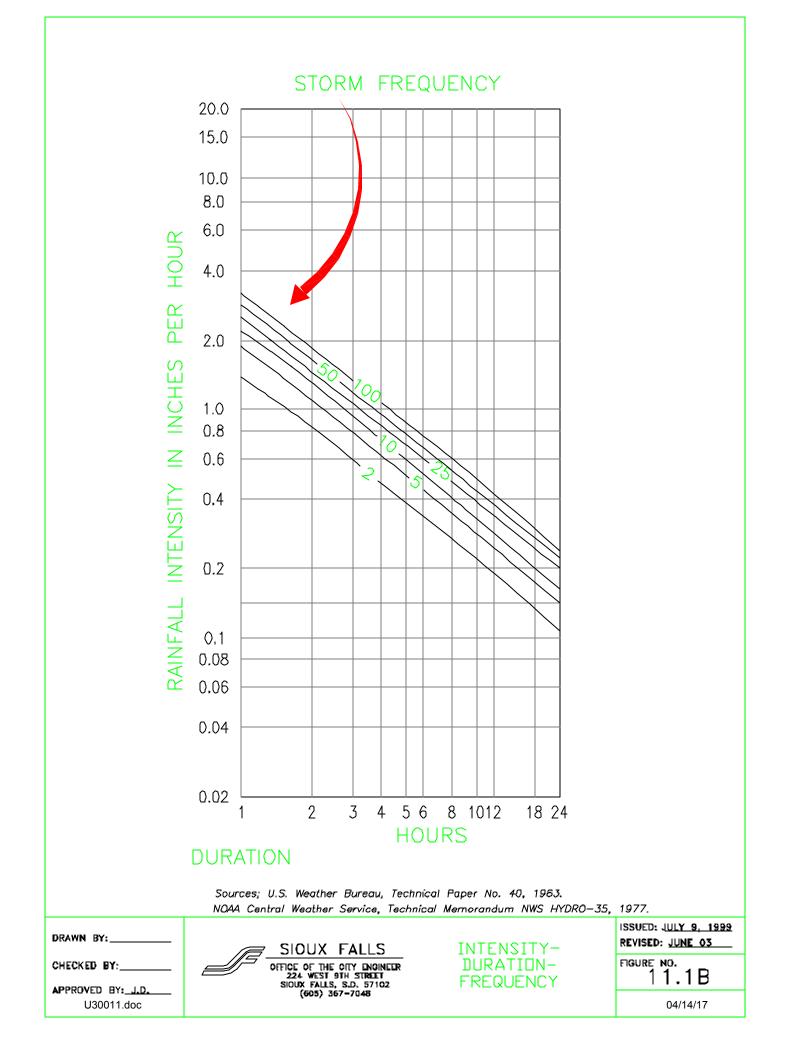
Given: A WQCV outlet with an orifice plate consisting of 2" high by 6.5" wide openings with Water Depth H = 4.5 feet above the lowest orifice plate opening.

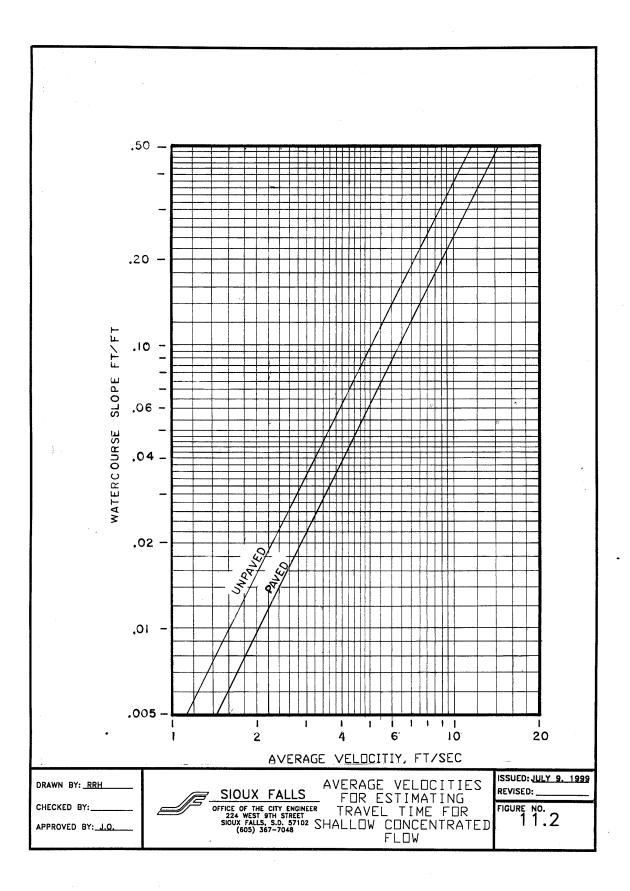
Solution: The dimensions of the concrete structure and the dimensions within the mounting frame for an aluminum bar grate trash rack are determined as follows.

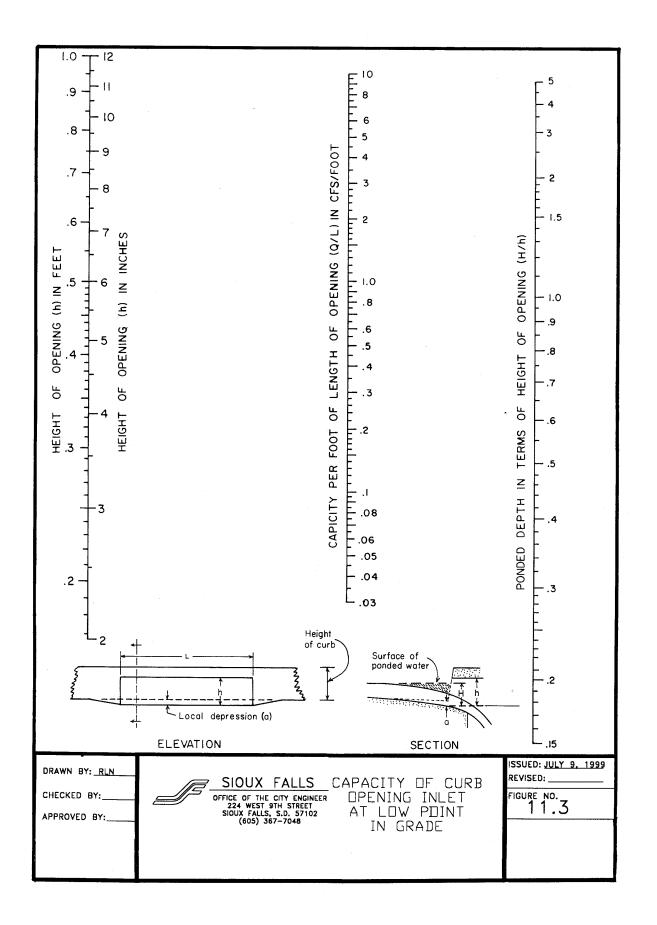
Trash Rack and Structure Widths: There are three widths shown in Section B-B of Figure 11.50a: W = the width of the rectangular openings in the orifice plate, W_{conc} = the width of the concrete opening where the orifice plate attaches, and $W_{opening}$ = the width of the concrete opening where the trash rack attaches.

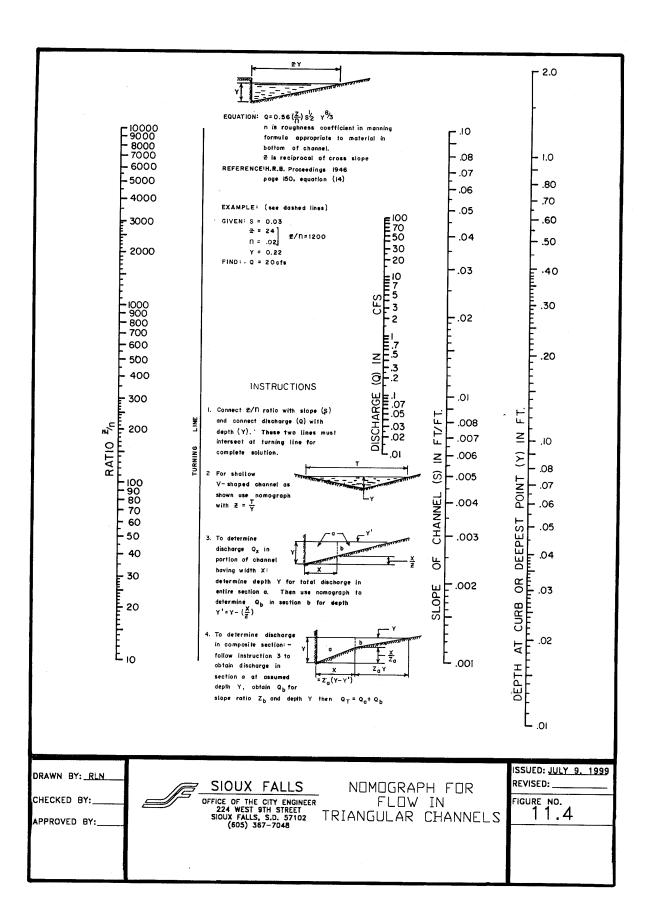
W_{conc.} = W + 12" (from Figure 11.53) = 6.5" + 12" = 18.5".

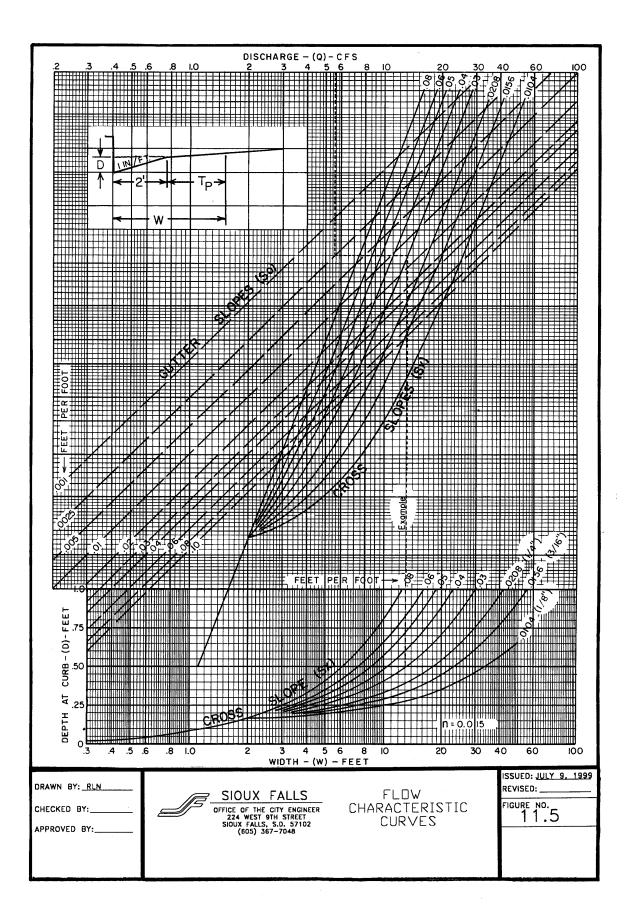
 $W_{opening}$: Given an orifice plate with rectangular openings 6.5" wide and Water Depth H = 5 feet (i.e., rounded up from 4.5 feet), Table 11-14a shows the minimum trash rack width, $W_{opening}$, is 7.5 feet.

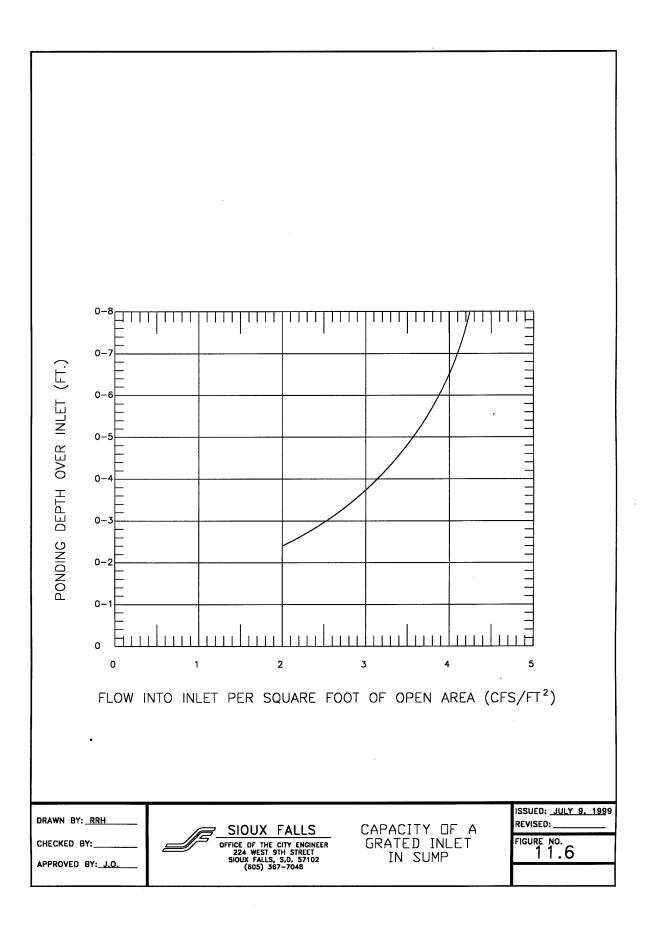

Trash Rack Height: The total trash rack height is the sum of the Water Depth H plus 2' (the height of the trash rack below the water depth, as shown in Section A-A of Figure 11.50a). Thus, the trash rack height equals 4.5' + 2' = 6.5'.

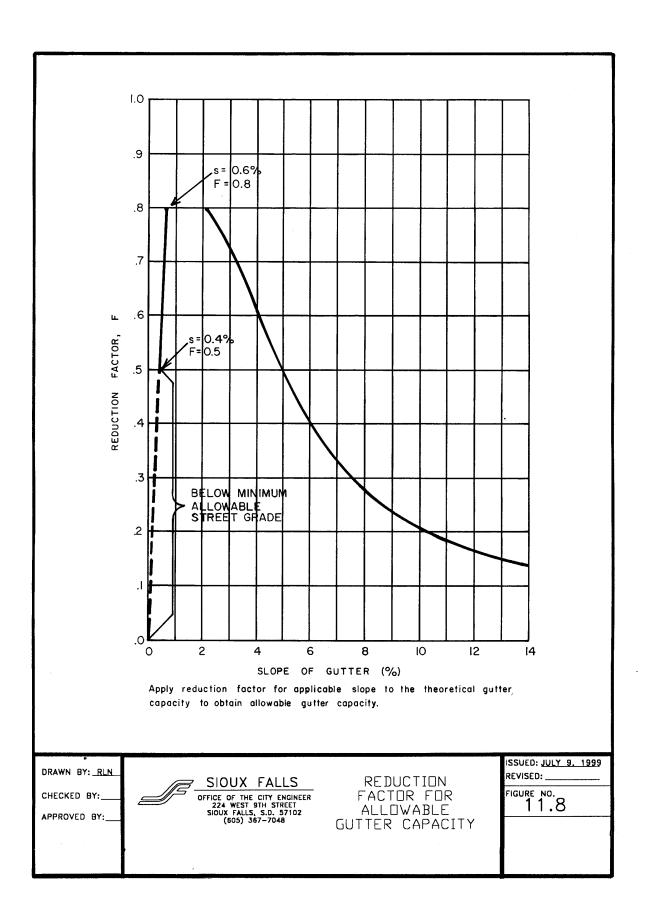

Dimensions Note: These trash rack dimensions are the minimum dimensions <u>within</u> the mounting frame. The trash rack mounting frame must be properly sized by a structural engineer taking into account the minimum trash rack dimensions, the intended method of fabrication, and the method of connection to the outlet structure.

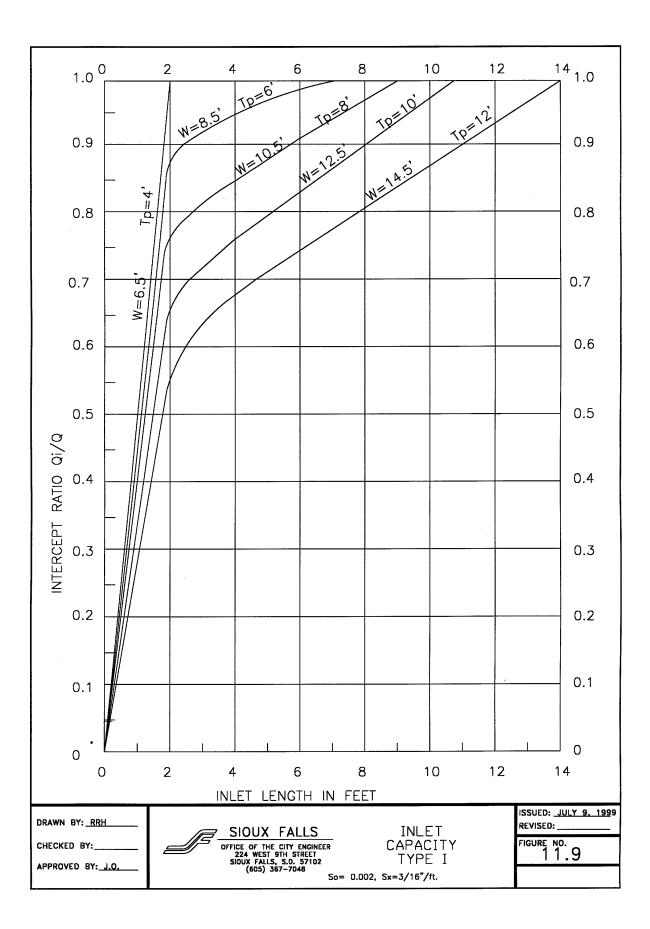

Ordering Specifications: From Tables 11.14a and 11.14b, the ordering specifications for H=5.0 feet or less is a Klemp Corporation aluminum bar grate (or equal) with 2" by 3/16" bearing bars spaced at 1-3/16" on-center, with cross rods spaced at 4" on-center. **Bearing bars are to be aligned vertically.**

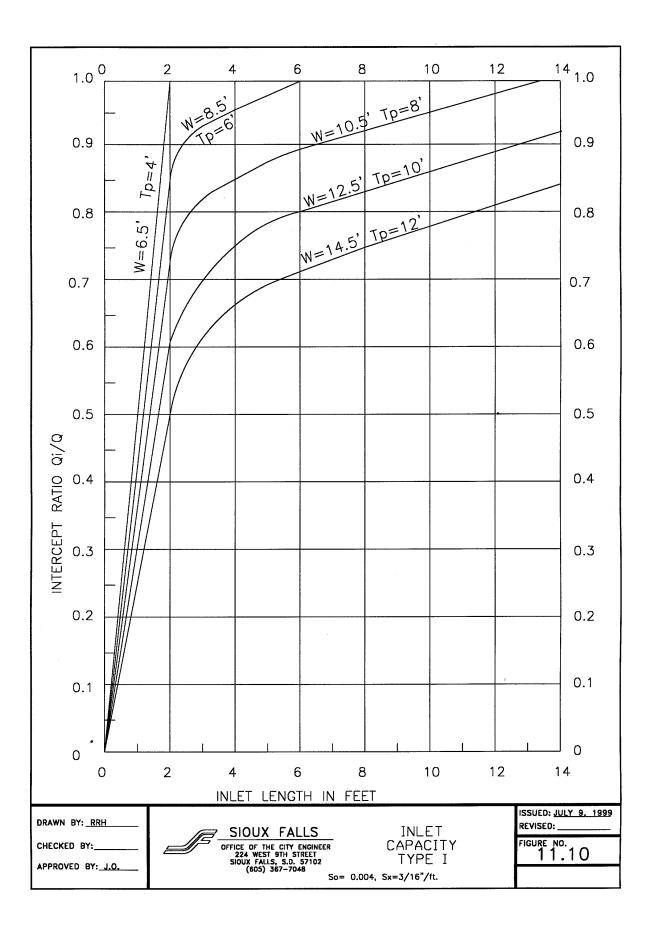

Figures

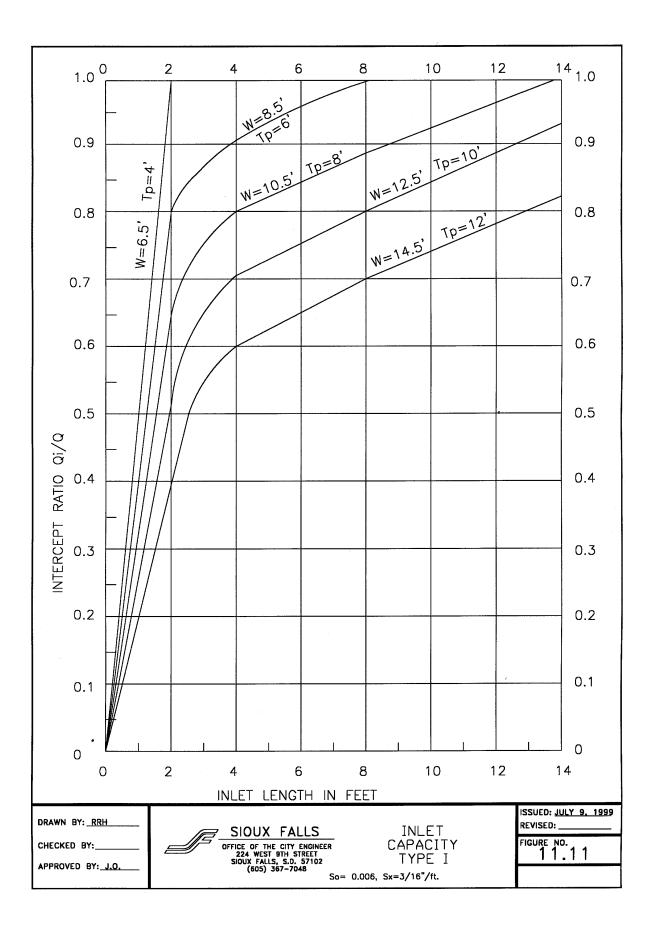

	RAINFALL INTENSITY, in / hr						
Тс	5 YEAR	100 YEAR	2 YEAR	10 YEAR	25 YEAR	50 YEAR	
15	4.39	7.43	3.53	5.04	6.00	6.72	
16	4.27	7.23	3.42	4.9	5.83	6.54	
17	4.15	7.05	3.32	4.77	5.68	6.37	
18	4.04	6.87	3.23	4.65	5.54	6.21	
19	3.93	6.71	3.13	4.53	5.4	6.06	
20	3.83	6.55	3.05	4.42	5.27	5.91	
20	5.05	0.55	5.05	4.42	5.27	5.91	
21	3.74	6.40	2.97	4.31	5.14	5.78	
22	3.65	6.25	2.89	4.21	5.02	5.64	
23	3.57	6.11	2.82	4.12	4.91	5.52	
24	3.49	5.98	2.75	4.03	4.80	5.40	
25	3.41	5.86	2.68	3.94	4.70	5.28	
26	3.34	5.74	2.62	3.86	4.60	5.17	
27	3.27	5.62	2.55	3.78	4.50	5.07	
28	3.2	5.51	2.5	3.71	4.41	4.97	
29	3.14	5.40	2.44	3.63	4.33	4.87	
30	3.08	5.30	2.39	3.57	4.24	4.77	
31	3.02	5.20	2.34	3.50	4.16	4.68	
32	2.96	5.11	2.29	3.44	4.08	4.60	
33	2.91	5.02	2.24	3.37	4.01	4.51	
34	2.86	4.93	2.20	3.32	3.94	4.43	
35	2.81	4.84	2.15	3.26	3.87	4.36	
36	2.76	4.76	2.10	3.20	3.80	4.28	
37	2.70		2.07		3.74	4.20	
		4.68		3.15			
38	2.67	4.61	2.03	3.10	3.68	4.14	
39	2.63	4.53	2.00	3.05	3.61	4.07	
40	2.59	4.46	1.96	3.01	3.56	4.01	
41	2.55	4.39	1.93	2.96	3.50	3.94	
42	2.51	4.32	1.89	2.91	3.45	3.88	
43	2.47	4.26	1.86	2.87	3.39	3.82	
44	2.43	4.20	1.83	2.83	3.34	3.76	
45	2.40	4.13	1.80	2.79	3.29	3.71	
46	2.36	4.08	1.00	2.75	3.23	3.65	
47	2.33	4.02	1.74	2.71	3.20	3.60	
48	2.30	3.96	1.71	2.68	3.15	3.55	
49	2.27	3.91	1.69	2.64	3.11	3.50	
50	2.24	3.85	1.66	2.61	3.06	3.45	
51	2.21	3.80	1.64	2.57	3.02	3.41	
52	2.18	3.75	1.61	2.54	2.98	3.36	
53	2.15	3.70	1.59	2.51	2.94	3.32	
54	2.13	3.66	1.56	2.48	2.90	3.27	
55	2.10	3.61	1.50	2.45	2.87	3.23	
56	2.10	3.56	1.54	2.43	2.83	3.19	
57	2.05	3.52	1.50	2.39	2.80	3.15	
58	2.03	3.48	1.48	2.36	2.76	3.11	
59	2.00	3.44	1.46	2.33	2.73	3.07	
60	1.98	3.39	1.44	2.31	2.69	3.04	
AWN I	BY: RRH	Sa	varces; FHA Circular No. 12 varces; U.S. Weather Bareau VA Central Weather Service,	ı, Technical Paper No. 40,	1963.	ISSUED: <u>May 03</u> Revised:	
ECKED) BY: <u>J.D.</u>		OUX FALLS	INTEN	ISITY-	FIGURE NO.	
	D BY:	22	OF THE CITY ENGINEER 4 West 9th street		TION-	11.1A	
	30011.doc	2101	JX FALLS, S.D. 57102 (605) 367-7048		UENCY ART	04/14/17	
				011			

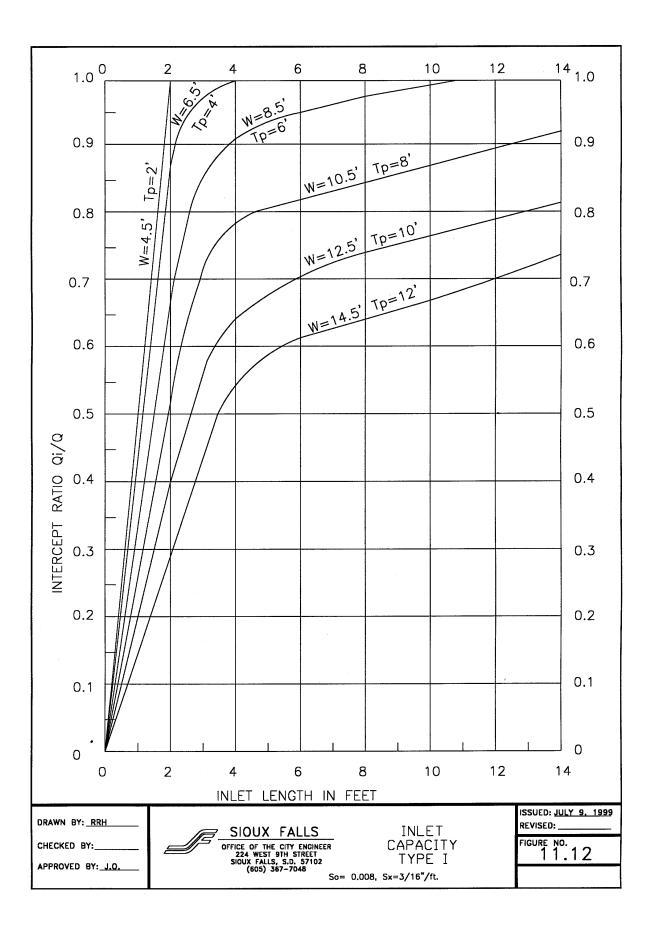


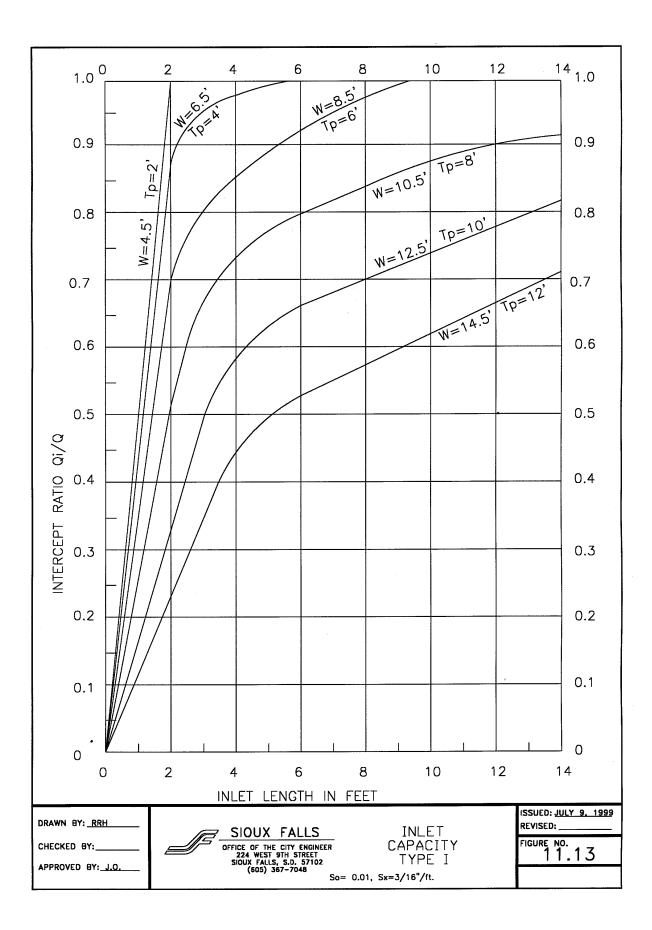


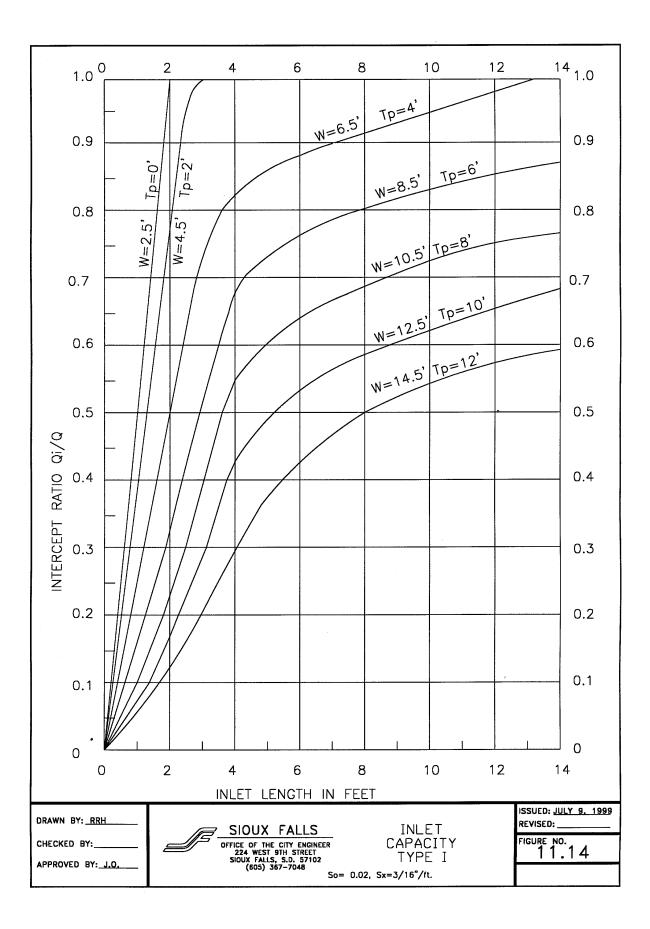

DESIGN CRITERIA	RESIDENTIAL LATERAL WITH PIPE	NON-RESIDENTIAL LATERAL / CONCRETE CHANNEL	MAJOR DRAINWAY
GRASS SIDE SLOPES	4:1 OR FLATTER	4:1 OR FLATTER	4:1 OR FLATTER
FREE BOARD (100 YEAR STORM)	0.5 FOOT	0.5 FOOT	H = 0.5+V ² /2g MIN. 1 FOOT
BOTTOM WIDTH MINIMUM	4 FOOT	6 FOOT	6 X DEPTH OF 100 Yr. FLOW
DEPTH (100 YEAR STORM)	MAX. 2 FOOT	MAX. 2 FOOT	PER MASTER DRAINAGE PLAN
SLOPE MINIMUM	1%	0.5%	0.2% — 0.6% (NATURAL)
LOW FLOW PIPE / CHANNEL	18" MIN. RESIDENTIAL & COMMERCIAL 2 YEAR INDUSTRIAL	2 YEAR CAPACITY CROSS-SLOPE 1/4" PER FOOT	N/A
RADIUS	N/A	N/A	2 X TOP WIDTH AND > 100 FEET CENTERLINE
VELOCITY	N/A	MIN. Z FOOT/SEC. 5 YEAR	MIN, 2 FOOT/SEC, 5 YEAR
DRAWN BY: <u>RRH</u> CHECKED BY: APPROVED BY: U30011.doc	CITY OF SION PUBLIC WORKS - DIVISION 224 W. 9TH STREET - SION PHONE: (805)367-8601 FAX	DF ENGINEERING IX FALLS, SD 57104	GN FIGURE NO.

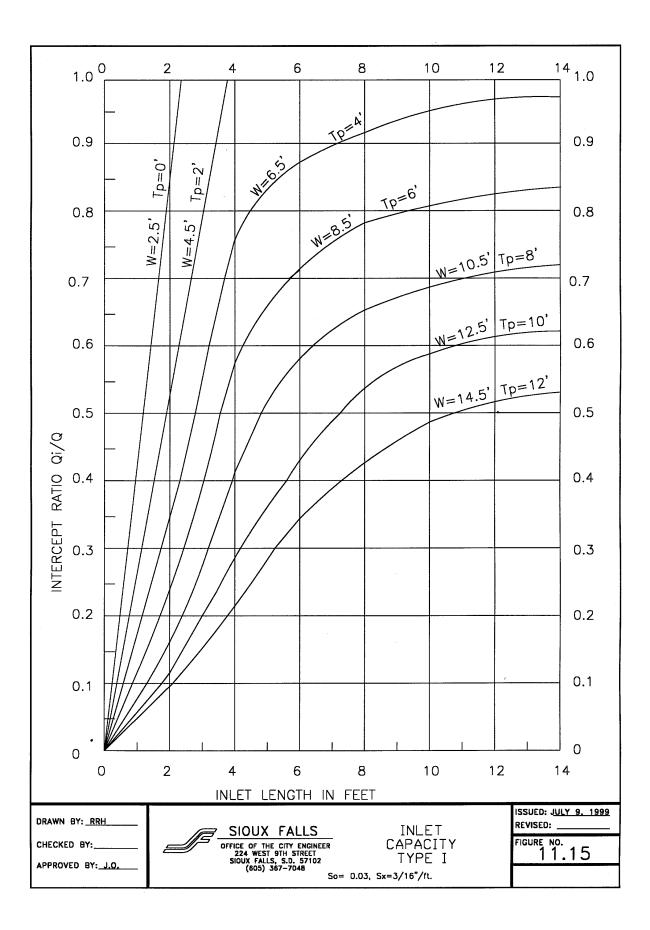

	MANNINGS "n" V	ALUE FOR DEPTH RANGES	
LINING TYPE	0 - 0,5 FEET	DEPTH 0.5 - 2.0 FEET	> 2.0 FEET
WOVEN PAPER NET	0.016	0.015	0.015
JUTE NET	0.028	0.022	0.019
FIBERGLASS ROVING	0.028	0.021	0.019
STRAW WITH NET	0.065	0.033	0.025
CURLED WOOD MAT	0.066	0.035	0.028
SYNTHETIC MAT	0.036	0.025	0.021
GRAVEL RIPRAP {1" D50}	0.044	0.033	0.030
GRAVEL RIPRAP (2" D50)	0.066	0.041	0.034
GRAVEL RIPRAP (6" D50)	0.104	0.069	0.035
GRAVEL RIPRAP (12 ⁴ D50)	N/A	0.078	0.040
ipted Fran FHVA, HEC-J3, APRIL 1983, page	: 37	I	ISSUED: <u>12-17-03</u>
RAWN BY: <u>RRH</u> HECKED BY: PPROVED BY: <u></u> U30011.doc	PUBLIC WORKS - DIVISI 224 W. 9TH STREET - PHONE: (805)367-8601	OUX FALLS ON OF ENGINEERING SIOUX FALLS, SD 57104 FAX: (605)367-4310 PROTE	NGS 'm' Issued: <u>12-12-05</u> IS FOR REVISED: IS FOR FIGURE NO. NNEL 1 1.7B ICTION 04/14/17

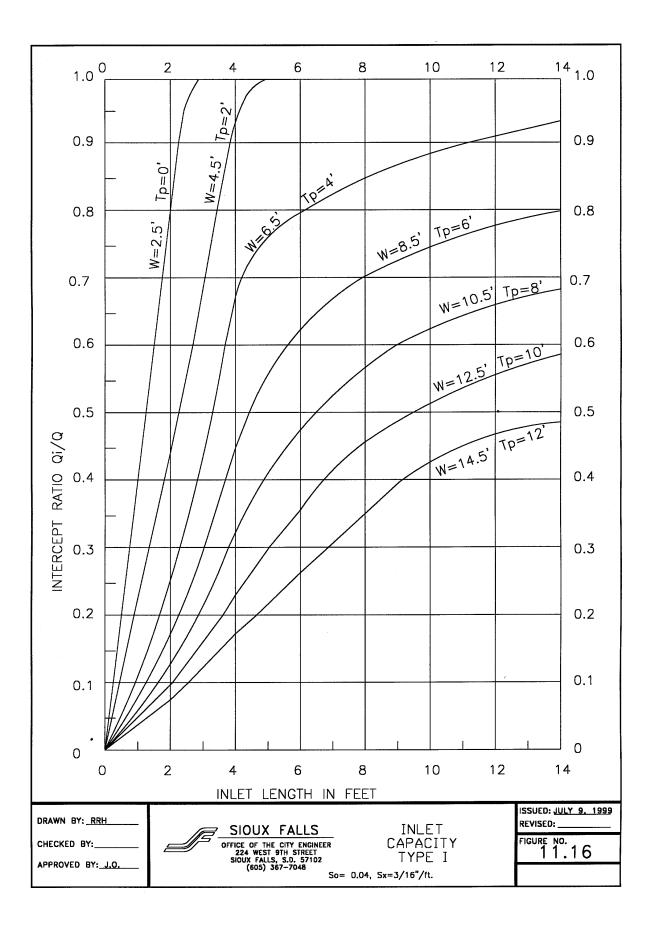

		SHEAR STRESS, Td
LINING TYPE	COMMENTS	(Lbs/Square Foot)
WOVEN PAPER NET	SUBMITTED BY DESIGN ENGINEER	0.15
JUTE NET	SUBMITTED BY DESIGN ENGINEER	0.45
FIBERGLASS ROVING	SUBMITTED BY DESIGN ENGINEER, SINGLE	0.60
FIBERGLASS ROVING	SUBMITTED BY DESIGN ENGINEER, DOUBLE	0.85
STRAW WITH NET	SUBMITTED BY DESIGN ENGINEER	1.45
CURLED WOOD MAT	SUBMITTED BY DESIGN ENGINEER	1.55
SYNTHETIC MAT	SUBMITTED BY DESIGN ENGINEER	2.00
VEGETATIVE, CLASS A	WEEPING LOVEGRASS, YELLOW BLUESTEM	3.70
VEGETATIVE, CLASS B	BERMUDA, BLUE GRAMA, NATIVE GRASS MIXTURES	2.10
VEGETATIVE, CLASS C	BERMUDA, KENTUCKY BLUE, CENTIPEDE	1.00
VEGETATIVE, CLASS D	BERMUDA, BUFFALO, GRASS LEGUME	0.60
VEGETATIVE, CLASS E	BERMUDA	0.35
GRAVEL RIPRAP	D50 STONE SIZE = 1 INCH	0.33
GRAVEL RIPRAP	D50 STONE SIZE = 2 INCH	0.67
ROCK RIPRAP	2.00	
ROCK RIPRAP	D50 STONE SIZE = 12 INCH	4.00
ited From FHVA. HEG-15. APRIL 1983.	pages 33 and 36	
WN BY: <u>RRH</u> CKED BY:	CITY OF SIOUX FALLS PUBLIC WORKS - DIVISION OF ENGINEERING 224 W. 9TH STREET - SIOUX FALLS, SD 57104	LOWABLE ISSUED: SHEAR EVISED: ESSES FOR FIGURE NO. CHANNEL 11.7C

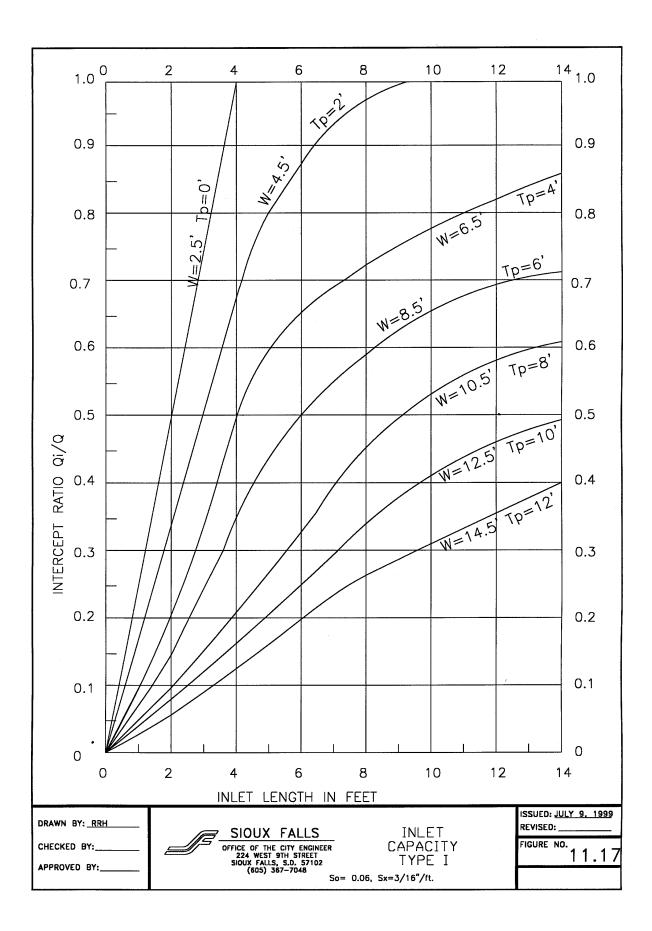

Figure 11.7D—Allowable Shear Stresses for Outlet Protection					
Lining Type	Comments	Shear Stress, Td (Ibs/square foot)			
Rock Riprap	Class A	4.00			
Rock Riprap	Class B	5.00			
Rock Riprap	Class C	7.80			

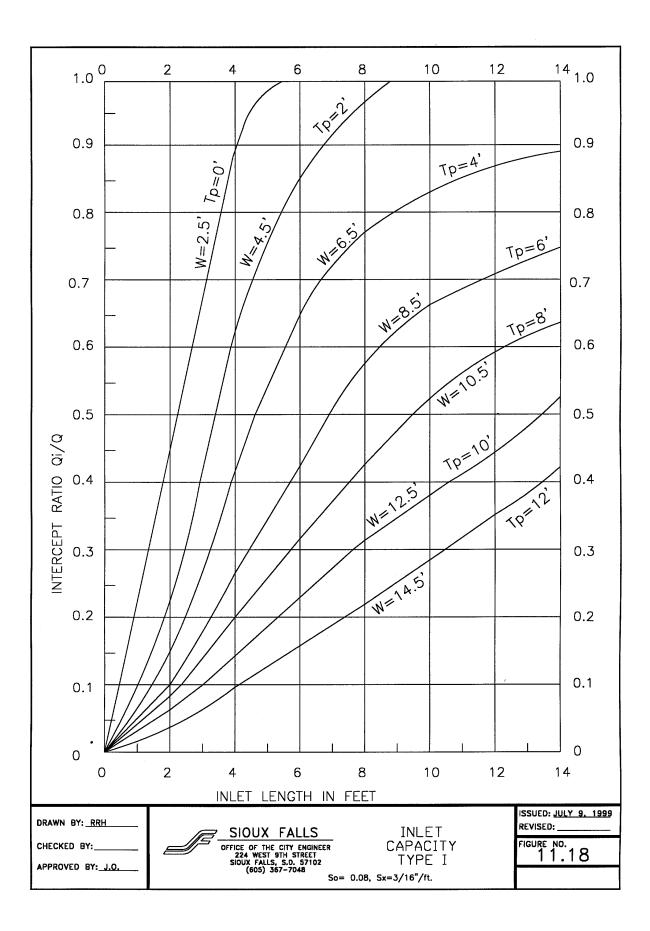


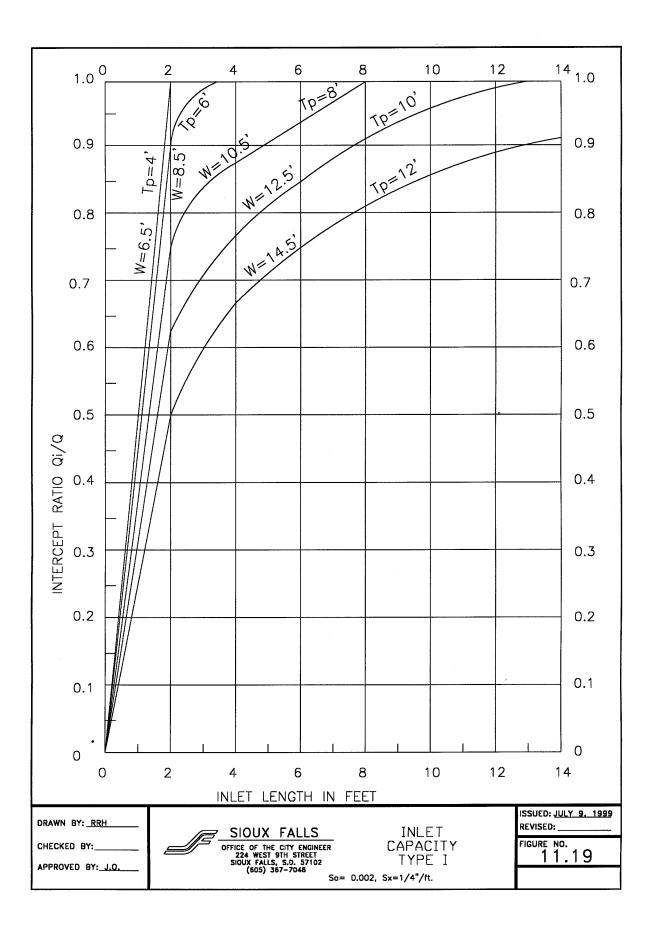


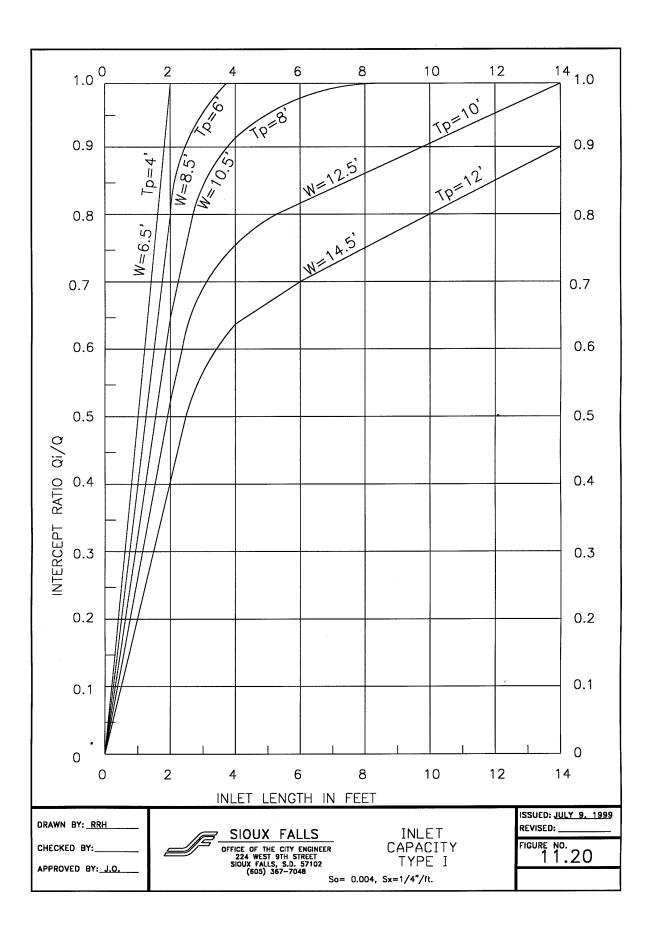


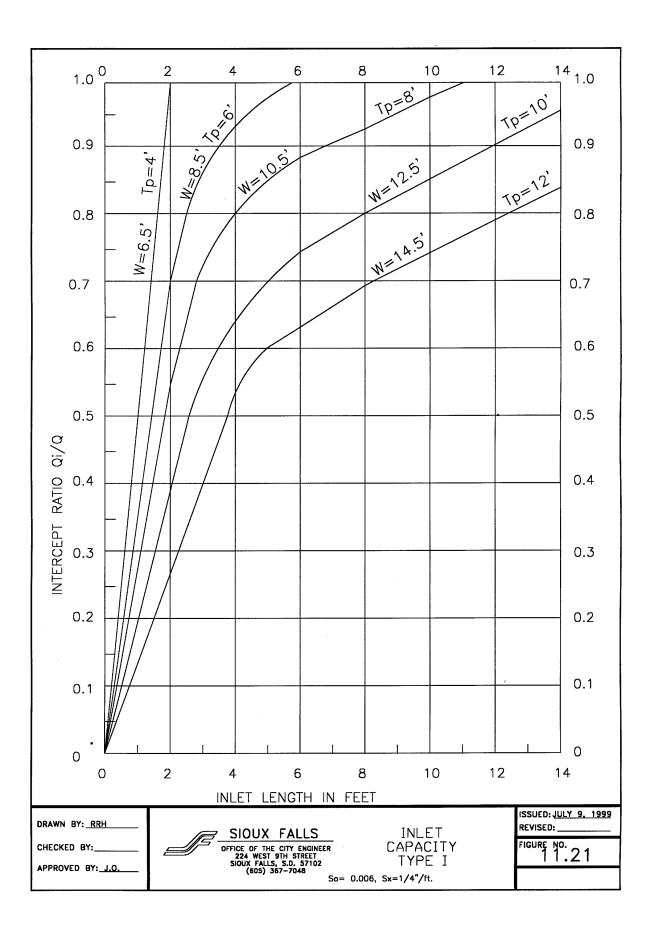


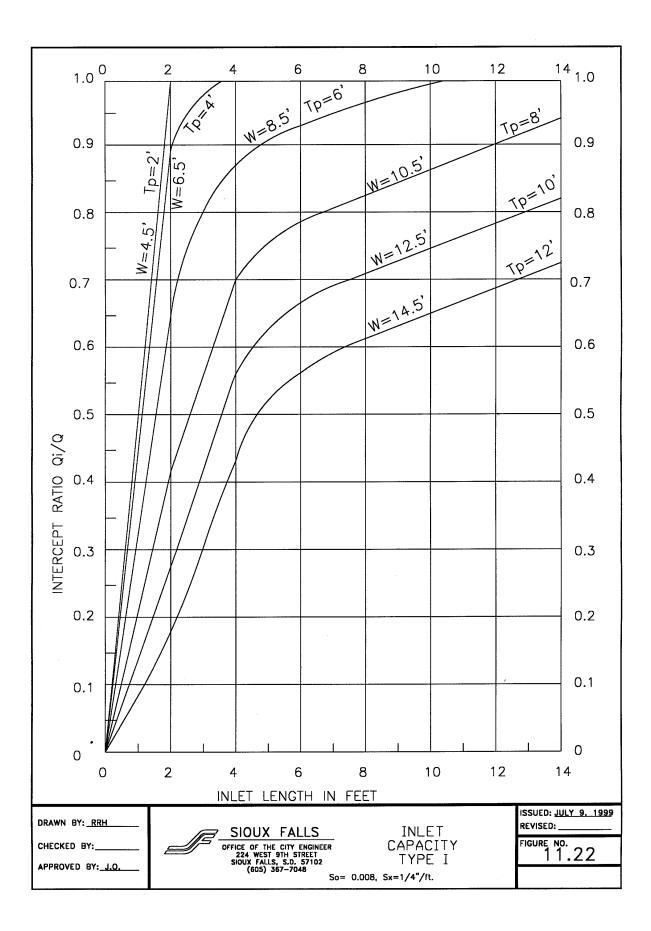


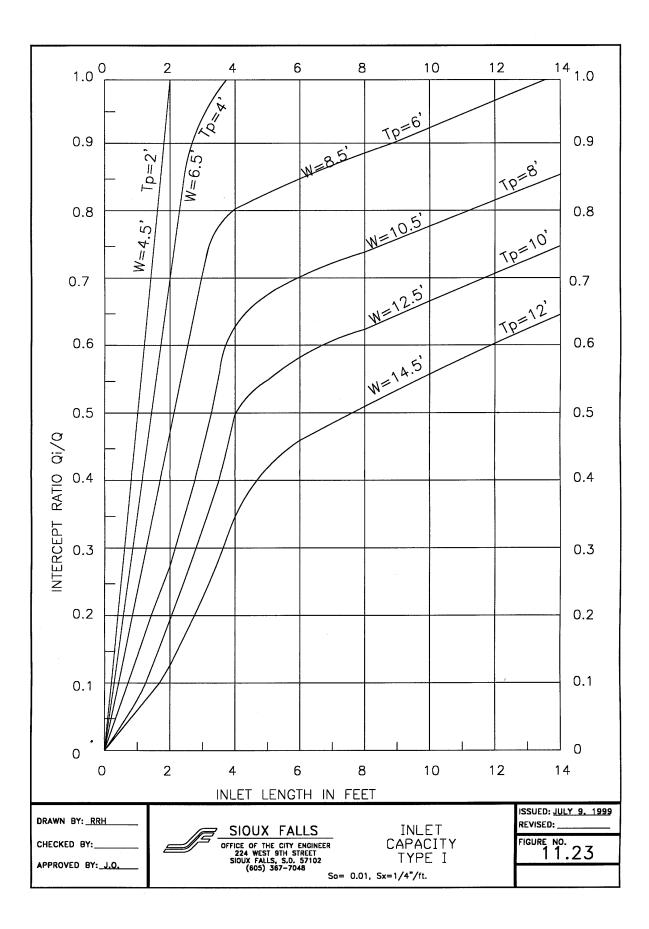


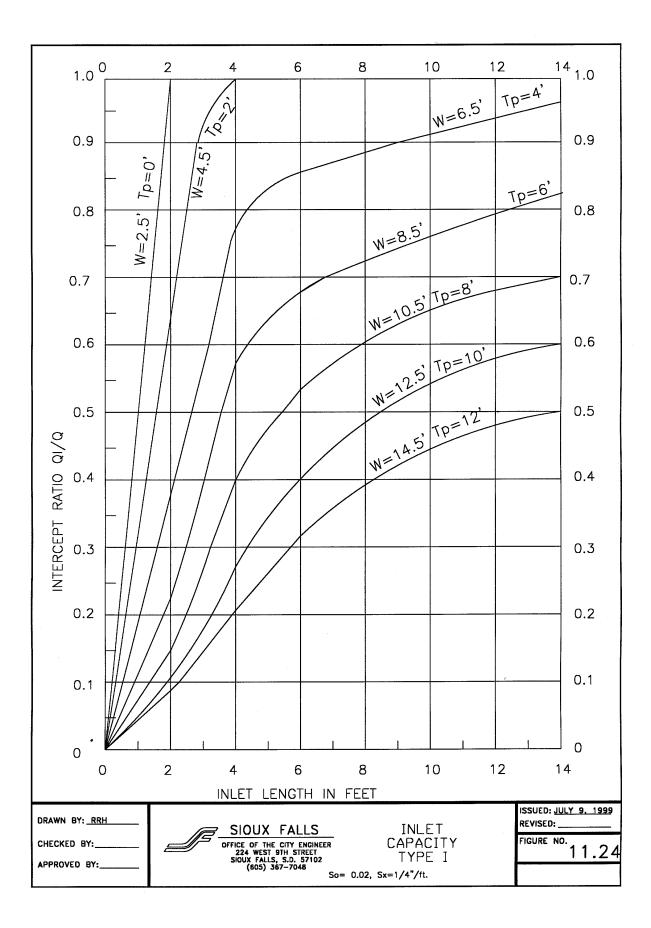


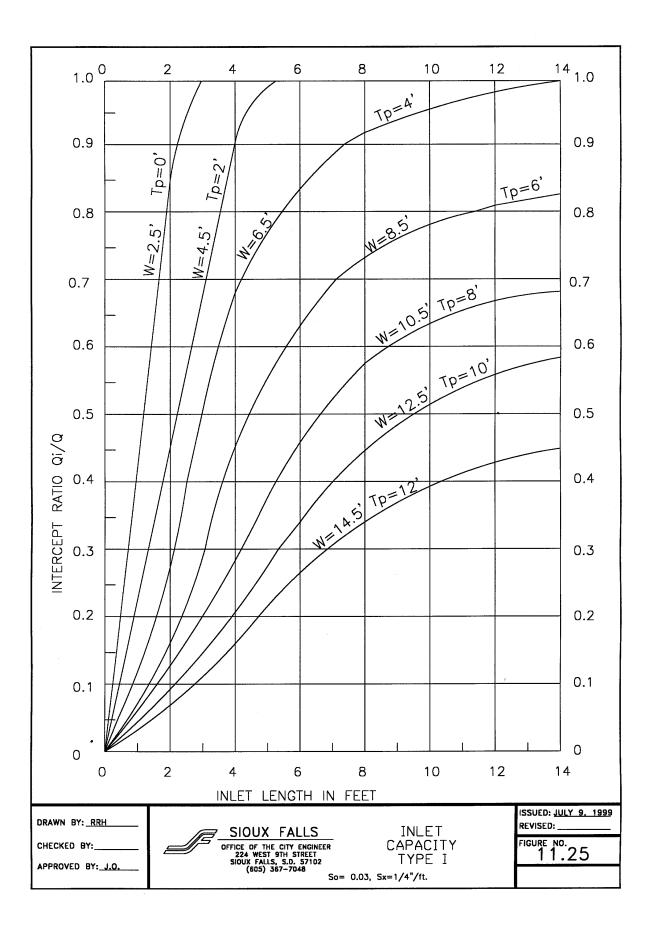


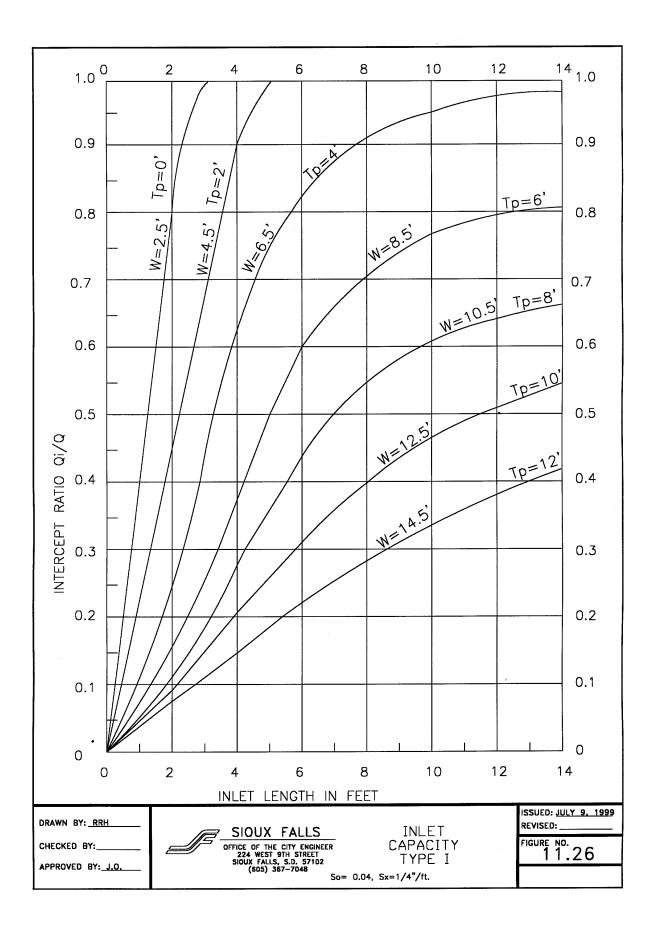


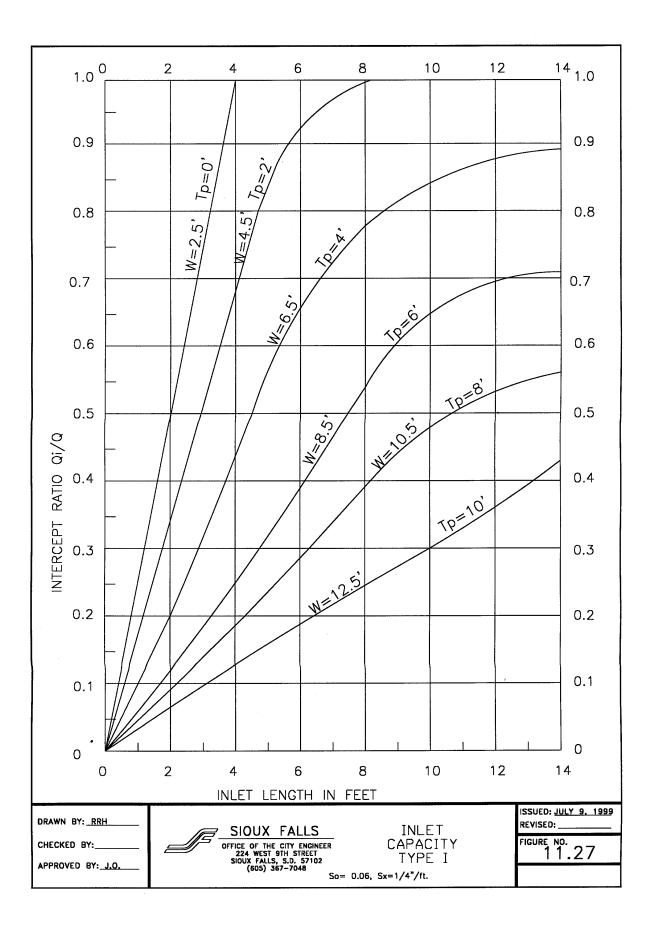


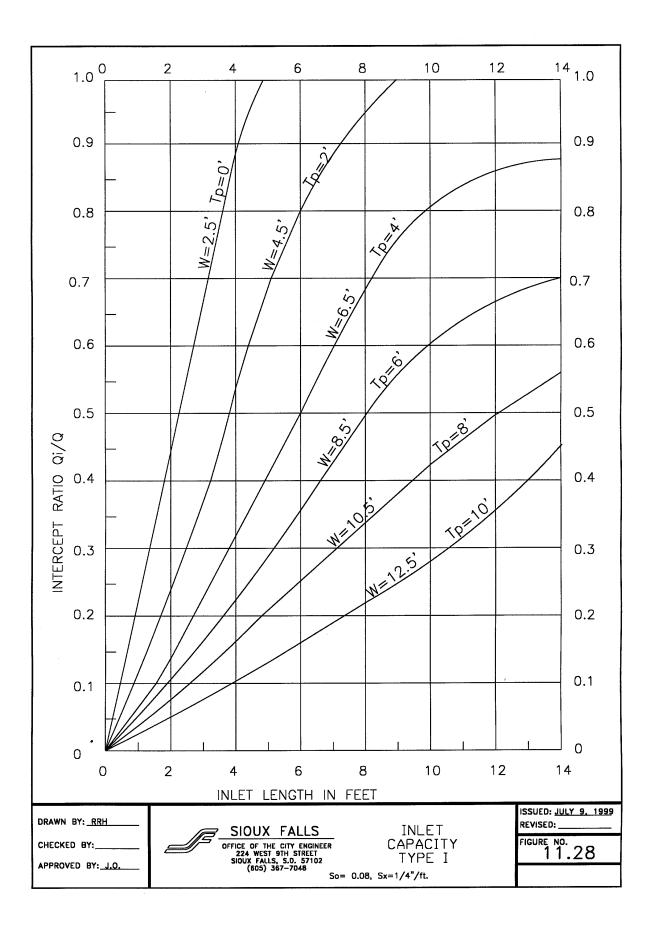


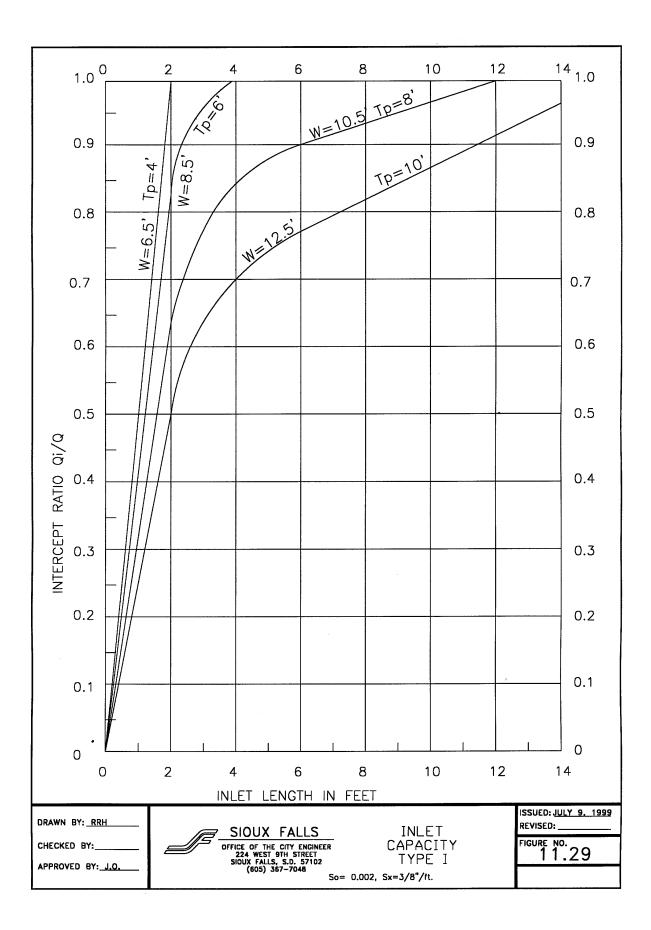


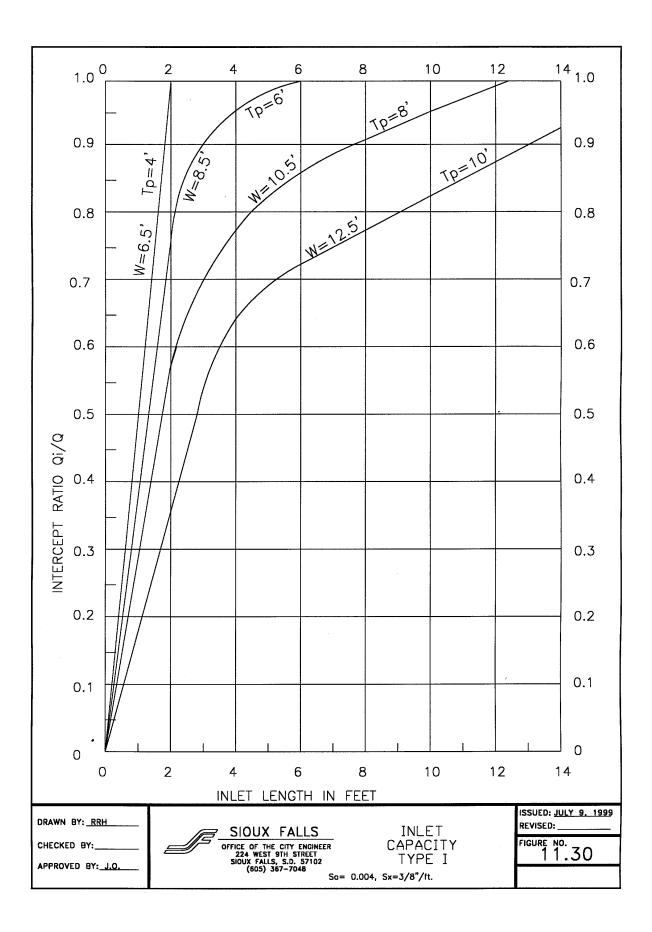


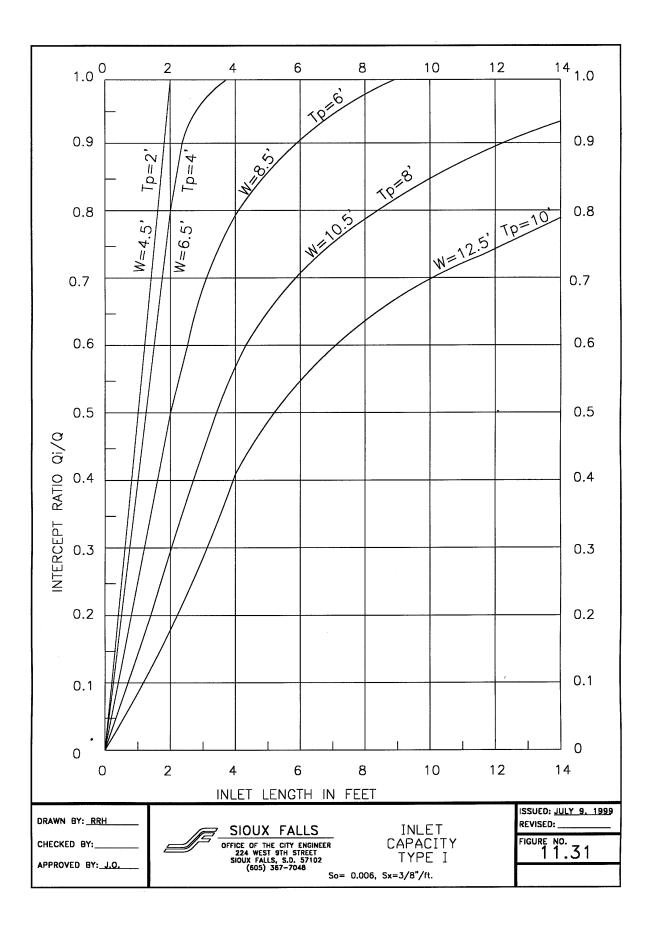


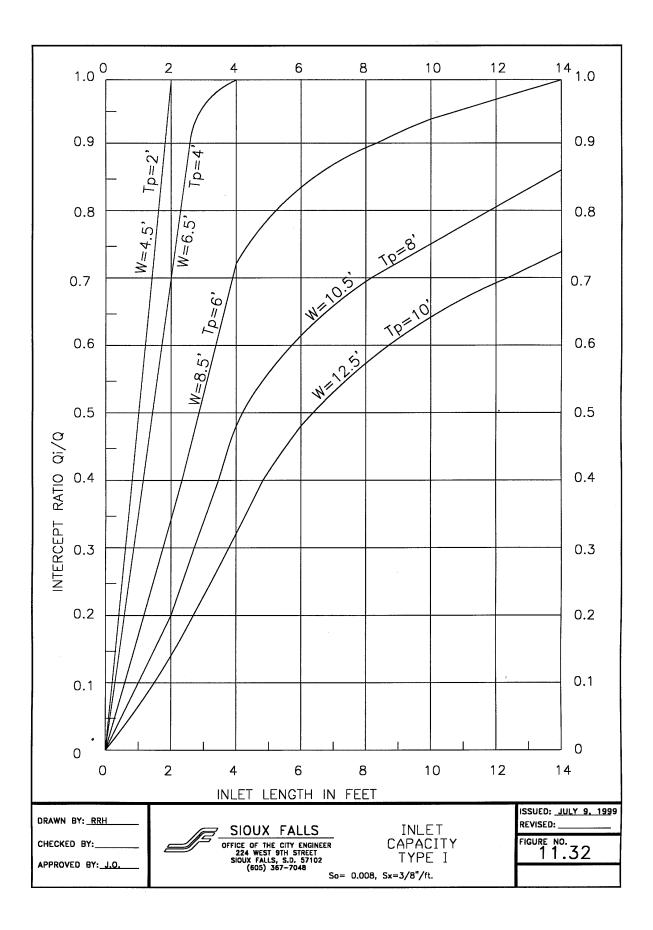


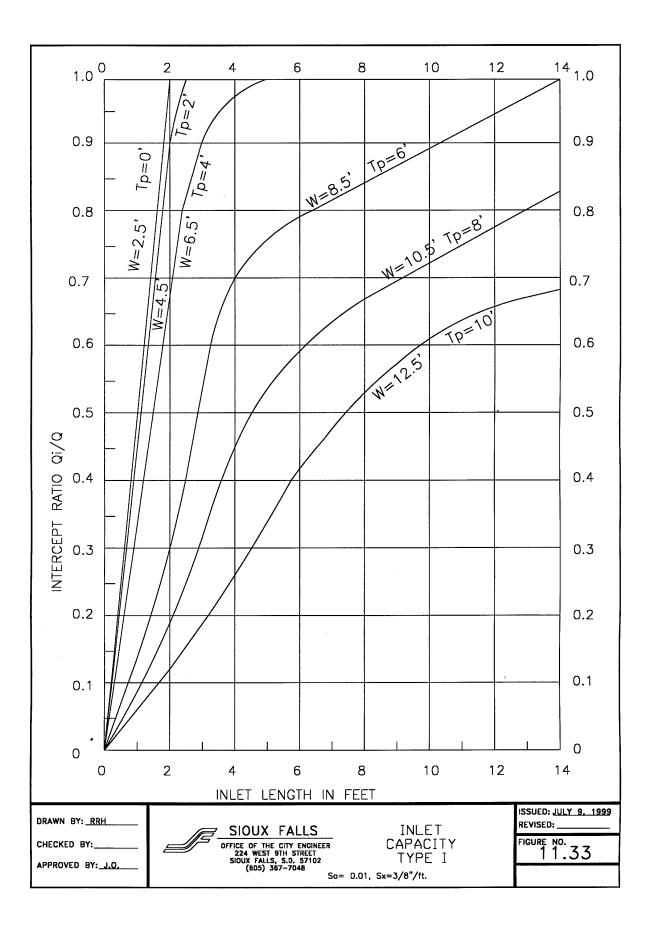


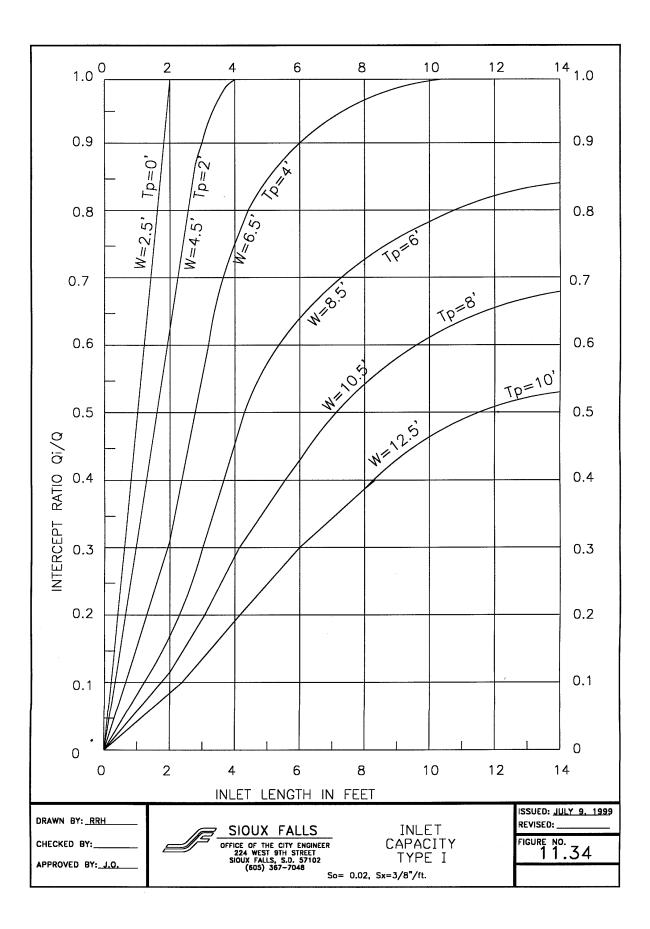


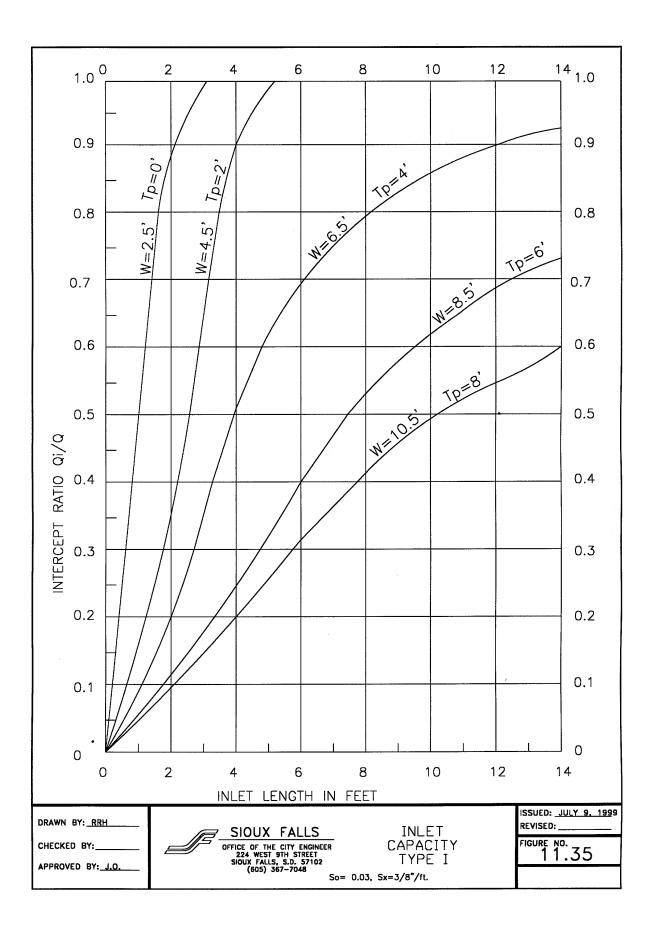


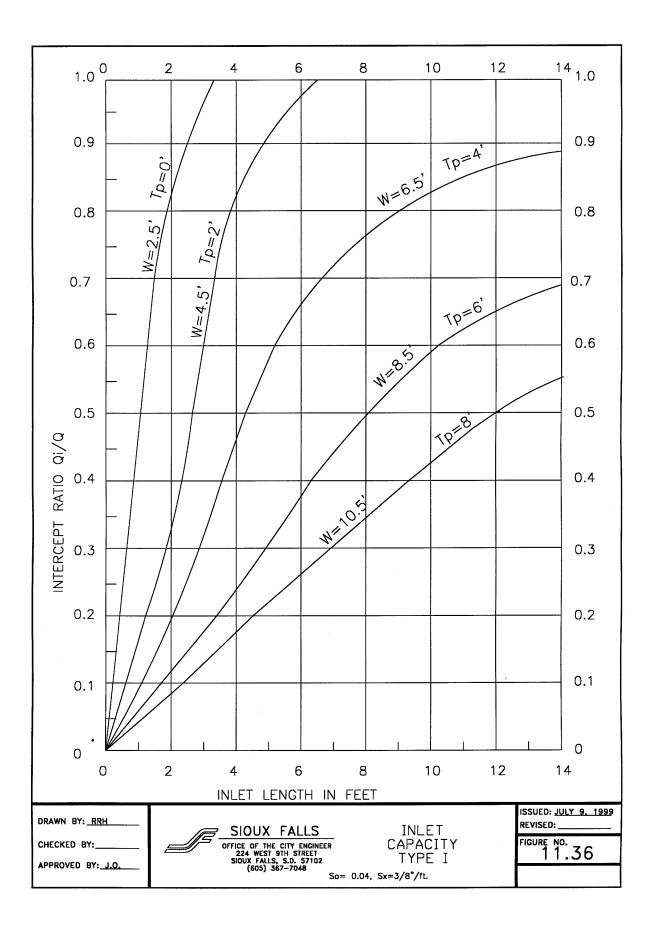


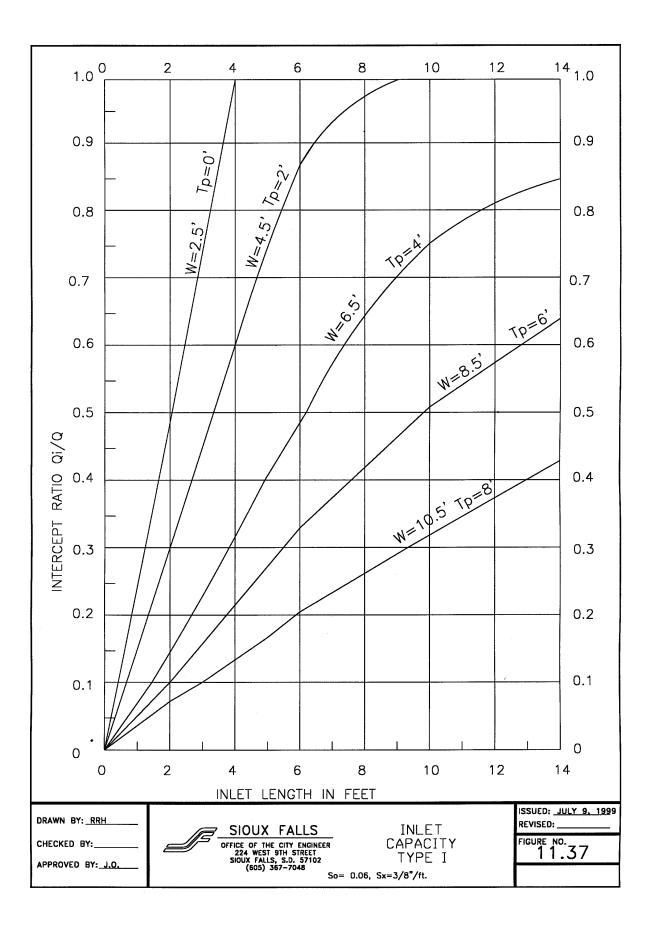


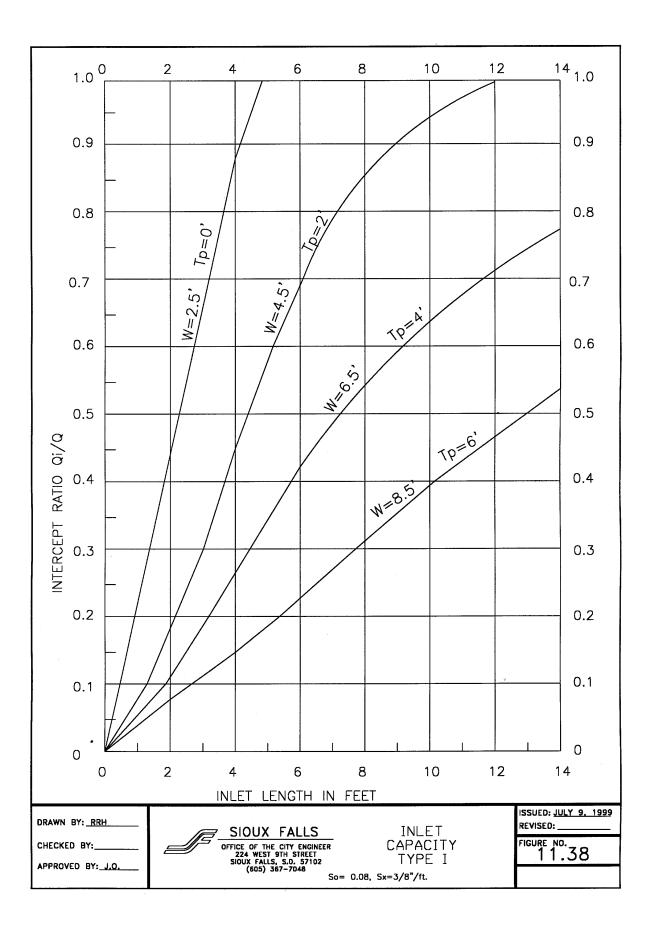


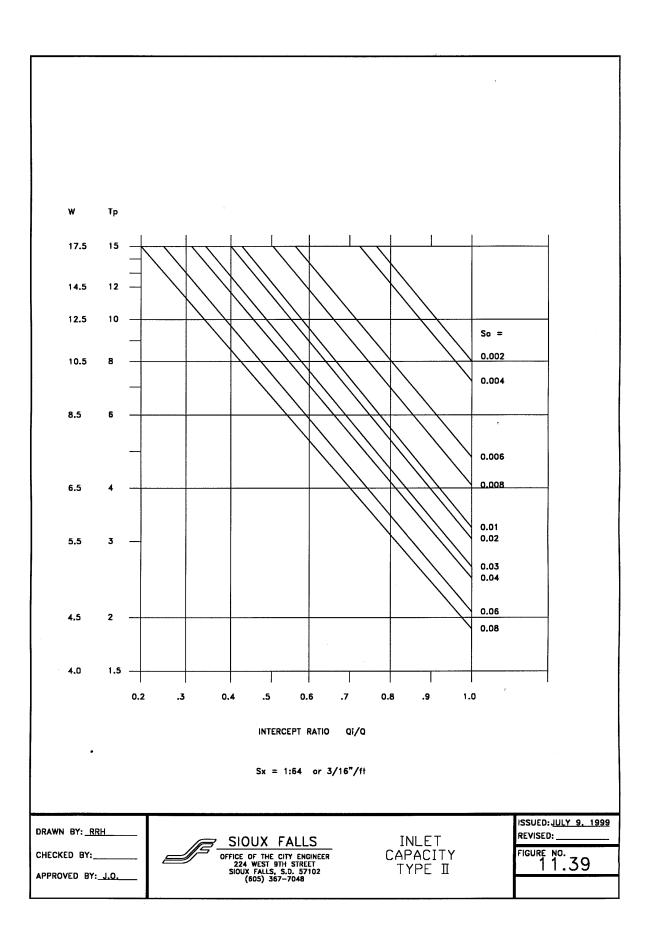


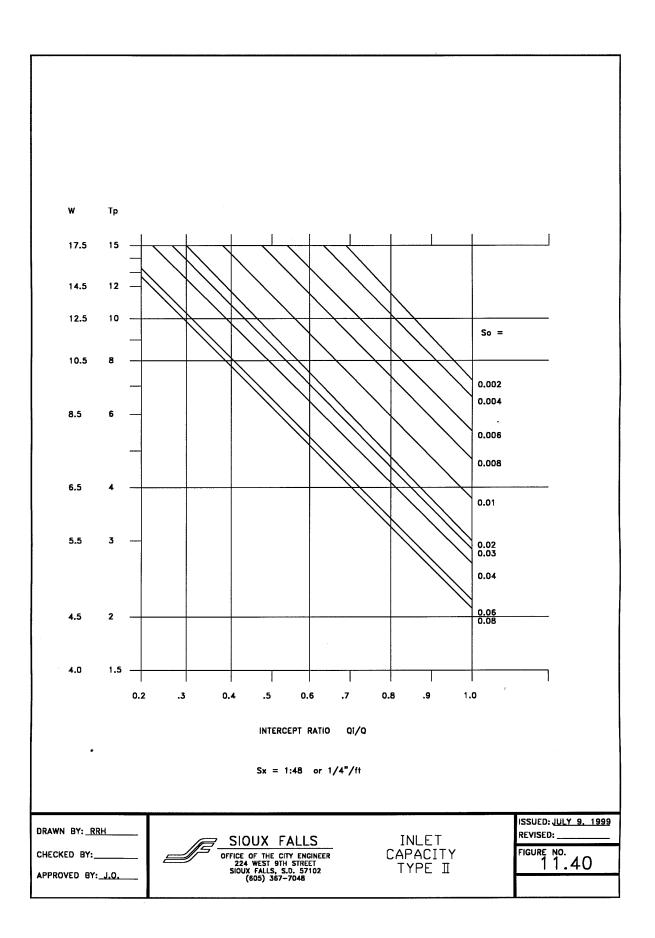


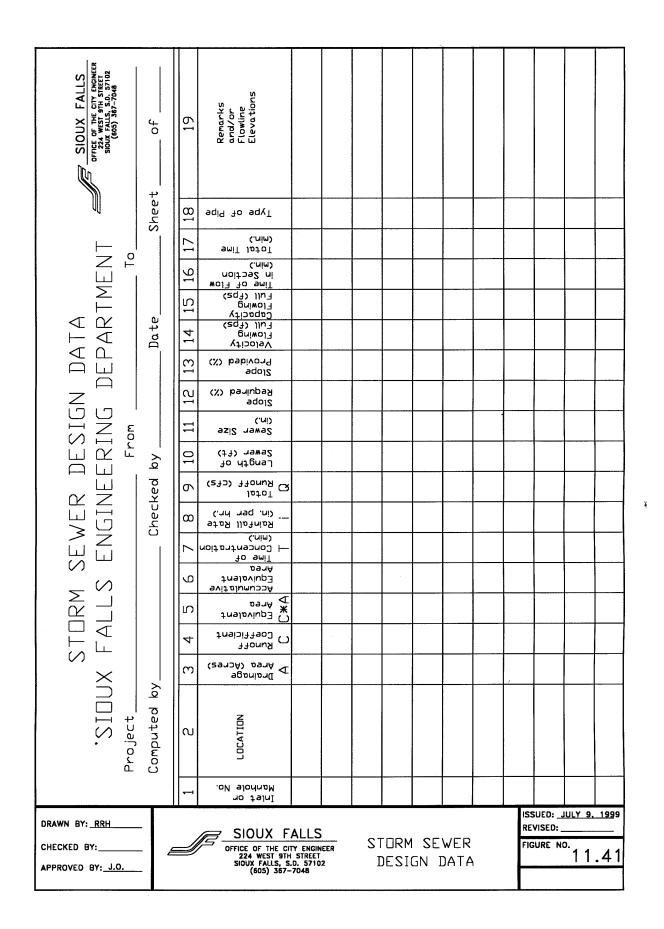


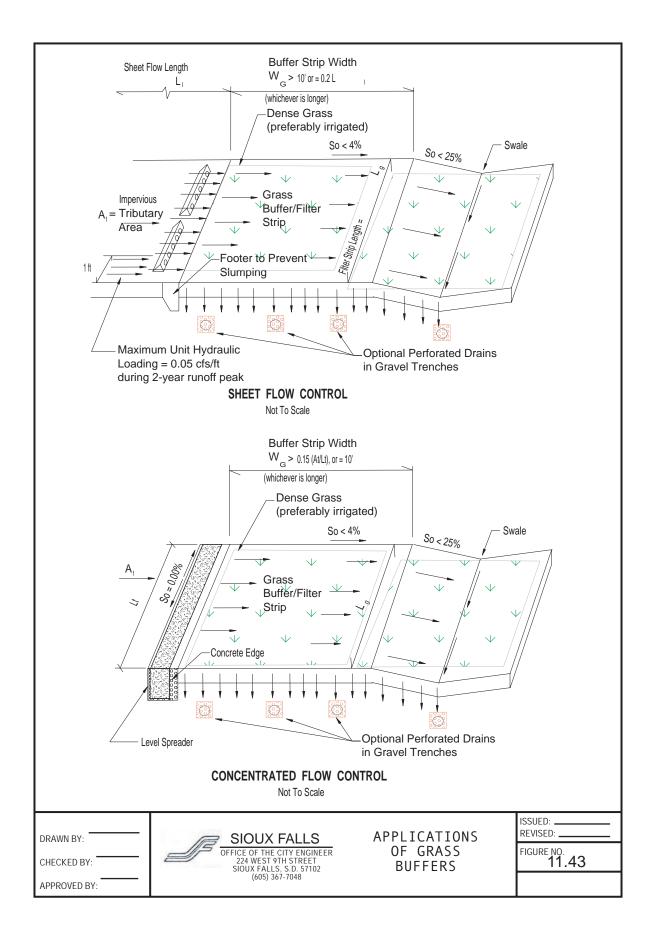


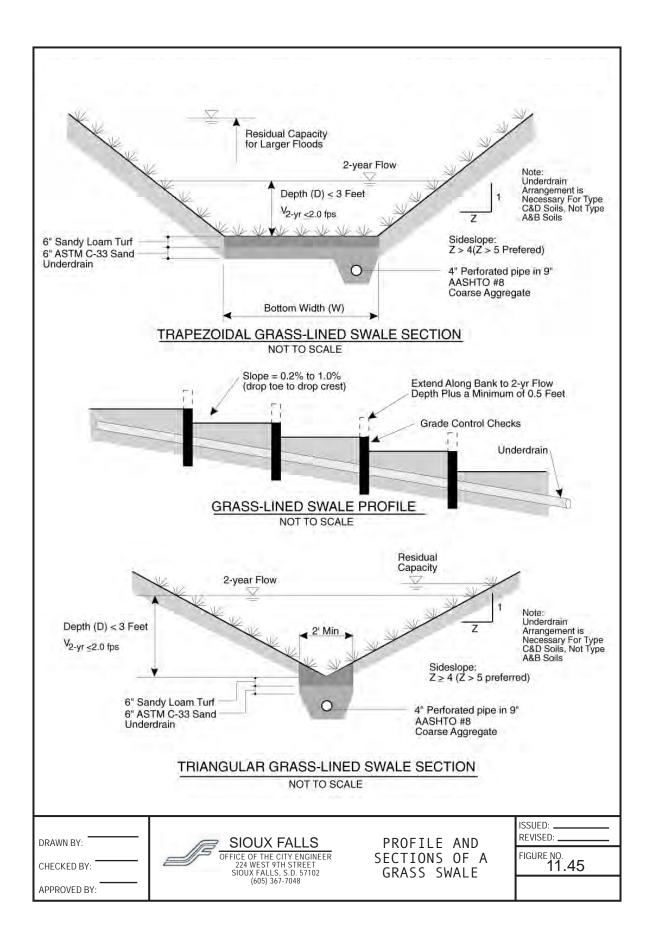


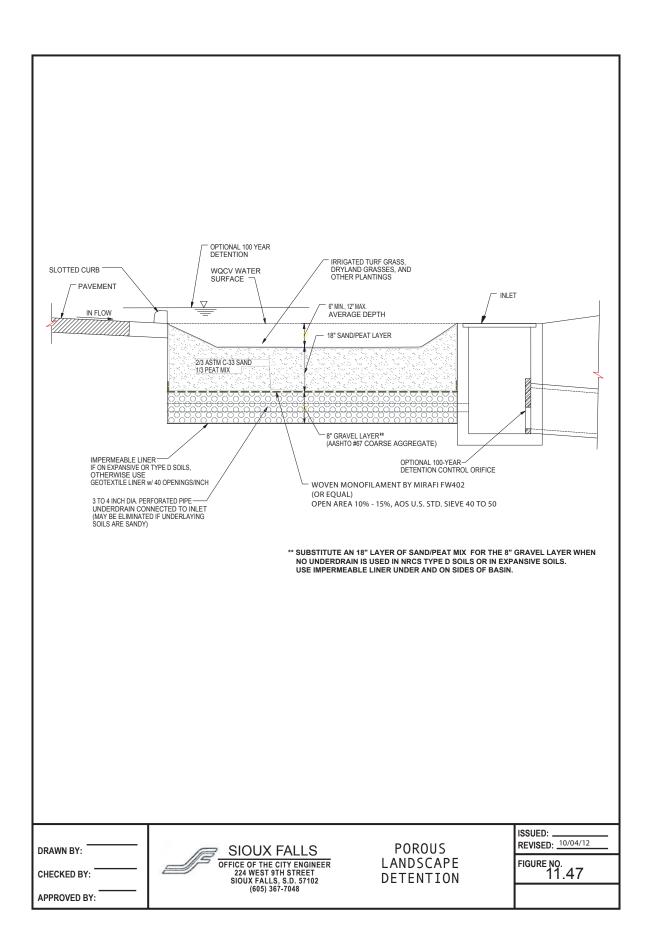


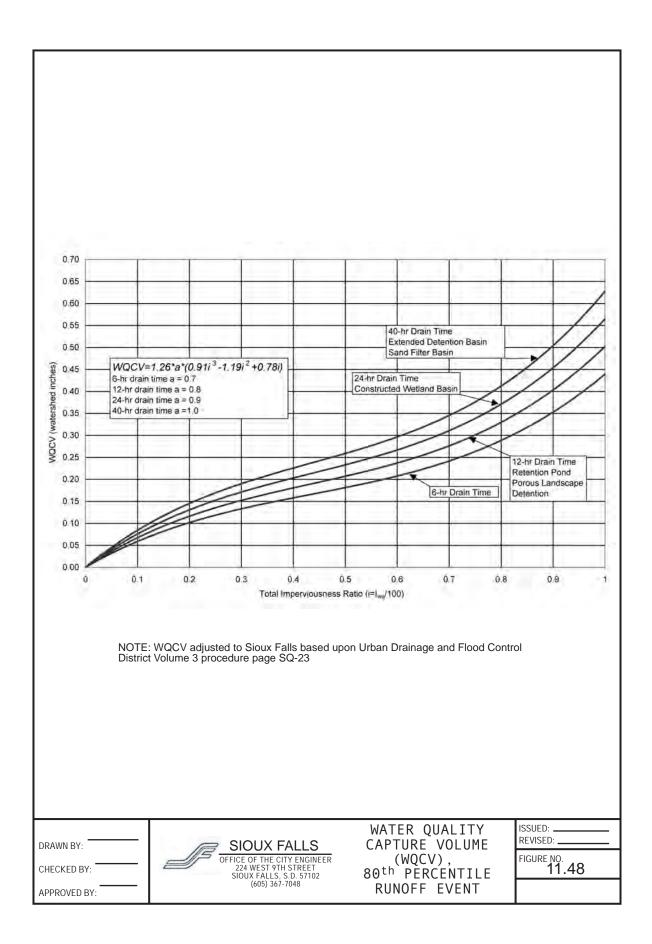




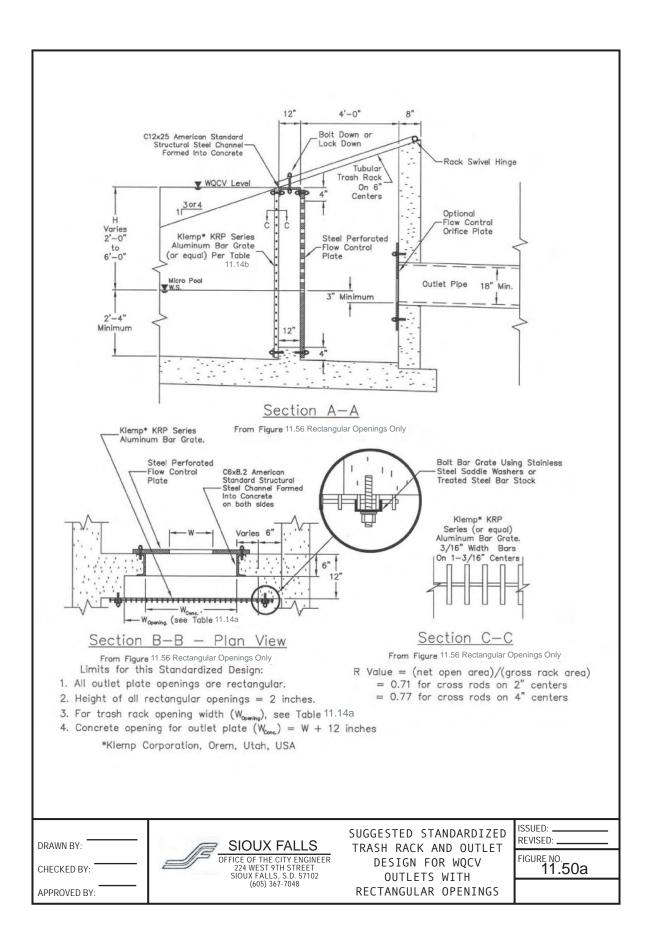


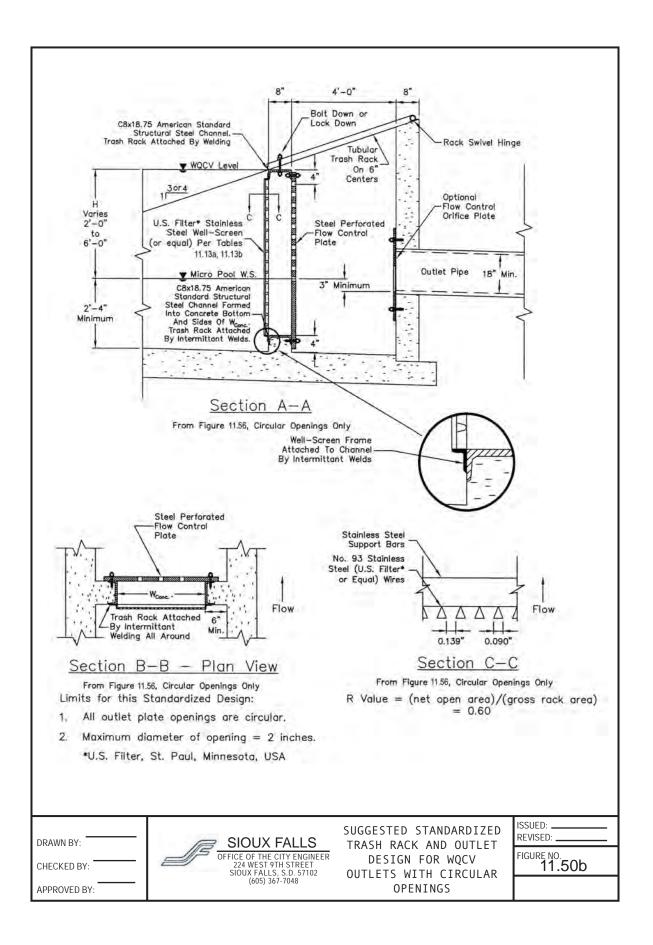



SIOUX FALLS office of the cir benetics sout plus, s.D. 57102 (eds) 557-7048	Sheetof	nlet Location GUTTER FLOW & INLET INTERCEPTION Gutter Pav t W D Q _{in} Bypass Inlet slope Slope V D Q _{in} Bypass Inlet						
			++					
STDRM SEWER INLET DESIGN DATA SIDUX FALLS ENGINEERING DEPARTMENT Project To		R FLDV & Stope t V						
EPAR	Date	Sketch of Drainage Pattern & Inlet Location 1GY QR = CiA GUTTER FLD 1GY QR = CiA GUTTER FLD 1GY 0G 5 clope Slope						
D								
	•	Ratter Carter			•			
	by _	A A A A A A A A A A A A A A A A A A A						
	ked							
	Chea				_			
					_			
≥ N			+		_	-+		
ALL			┥──┼			_		
STDRM UX F	by	INLET						
	ted	I O N						
	Compu	AREA			,			
				1551		JULY	9.1	999
DRAWN BY: RRH	—	SIOUX FALLS	_ET	REVI	ISED:	0.		
CHECKED BY:)	OFFICE OF THE CITY ENGINEER STURM SEWER INL 224 WEST 9TH STREET SIGUX FALLS, S.D. 57102 DESIGN DATA (605) 367-7046	'			<u> </u> 1	1.4	<u>42</u>

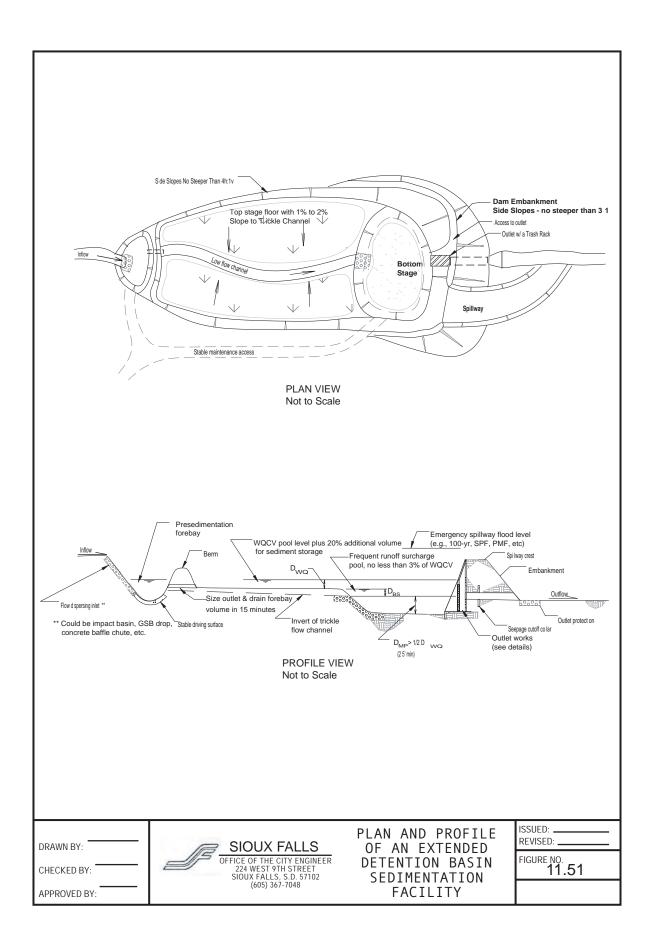


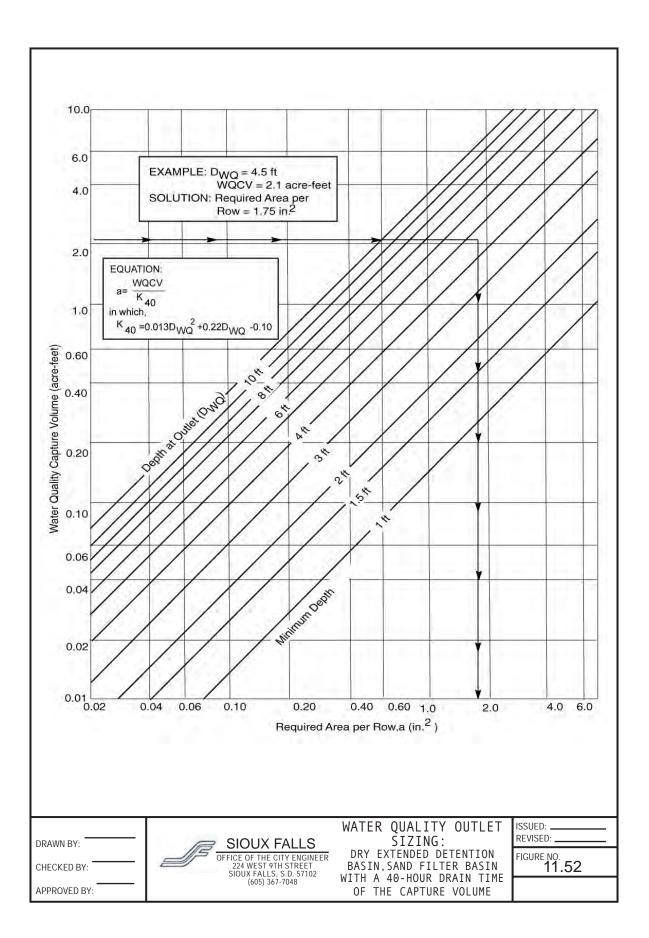
C	esign Procedure Forn	n: Grass Buf	fer (GB)	
Designer: Company: Date: Project: Location:				
1. 2-Year Design Discharge (Total)		Q ₂ =	5.0 cfs	
 2. Tributary Catchment Flow A) Design Length (Normal to runoff flog B) Tributary Area in Square Feet (A_t) 	w path): $L_G = Q_2 / 0.05$	L _G =	100 feet 0,000 square feet	
 3. Design Width Along Direction of Flow (A) Sheet Flow Control Upstream i) Length of Flow Path Over Upstream ii) Design Width of Buffer: W_G = 0.2 B) Concentrated (Non-Sheet) Flow Concentrated (Non	am Impervious Surface * L _i (10' minimum) ontrol Upstream : below) preader	$L_{I} = $ $W_{G} = $ $L_{I} = $ $W_{G} = $	feet feet 80 feet 18.8 feet	
4. Design Slope (not to exceed 4%)		S =	4.00 %	
 Flow Distribution (Check the type used Note: If Method B was Used In Step 3 Level Spreader Must Be Checked Her 	9	Mod	ted Curbing lular Block Porous Pavement el Spreader er:	
6. Vegetation (Check the type used or de	scribe "Other")		ated Turf Grass -Irrigated Turf Grass er:	
7. Outflow Collection (Check the type use	ed or describe "Other")	Stre Stor	ss Lined Swale et Gutter m Sewer Inlet erdrain Used err:	
Notes:				
	SIOUX FALLS		DESIGN PROCEDURE	ISSUED: REVISED: FIGURE NO. 11.44

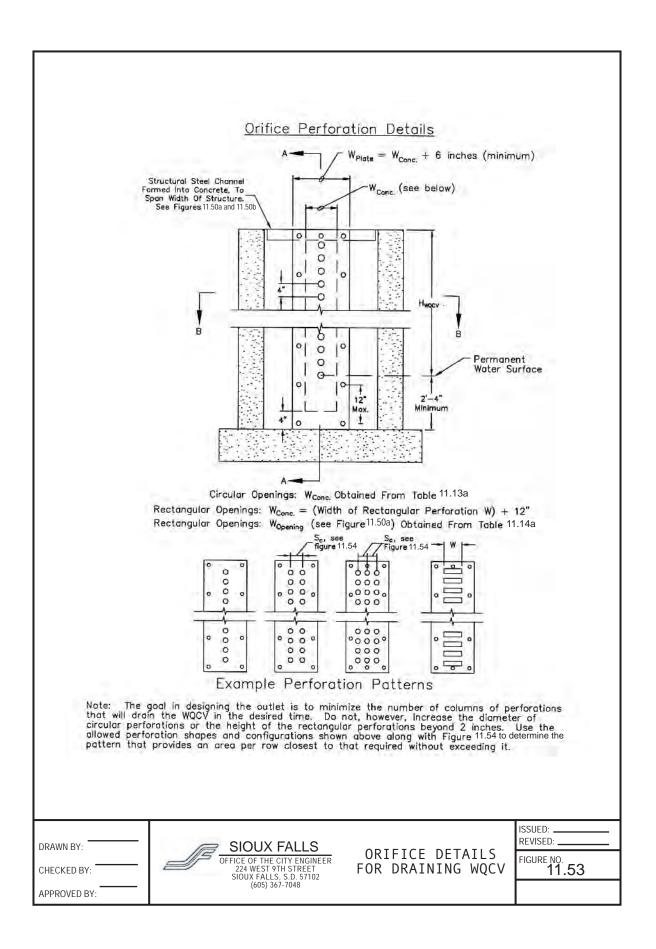



Design Procedure Form: Grass Swa	ale (GS) Sedimentation Facility
Designer: Company: Date: Project: Location:	
 2-Year Design Discharge (Total) 2-Year Design Flow Velocity (V₂, 1.5 fps Maximum) 	$Q_2 = 10.0$ cfs $V_2 = 1.30$ fps
 2. Swale Geometry A) Channel Side Slopes (Z, horizontal distance per unit vertical) B) 2-Year Design Flow Depth (D₂, 2 feet maximum) C) Bottom Width of Channel (B) 3. Longitudinal Slope A) Froude Number (F, 0.50 maximum, reduce V₂ until F ≤ 0.50) A) Design Slope (S, Based on Manning's n = 0.05, 0.01 Maximum) B) Number of grade control structures required 4. Vegetation (Check the type used or describe "Other") 	$Z = 4.00 (horizontal/vertical)$ $D_2 = 1.4 feet$ $B = 0.0 feet$ $F = 0.28$ $S = 0.0032 feet/feet$ $5 (number)$ $\boxed{X Dryland Grass}$ $Irrigated Turf Grass$ $Other: \qquad \qquad$
5. Outlet (Check the type used or describe "Other")	X Infiltration Trench w/ Underdrain Grated Inlet Other:
Notes:	
A BY: SIOUX FALLS OFFICE OF THE CITY ENGINEER 224 WEST 9TH STREET	DESIGN PROCEDURE FORM: GRASS SWALE SEDIMENTATION

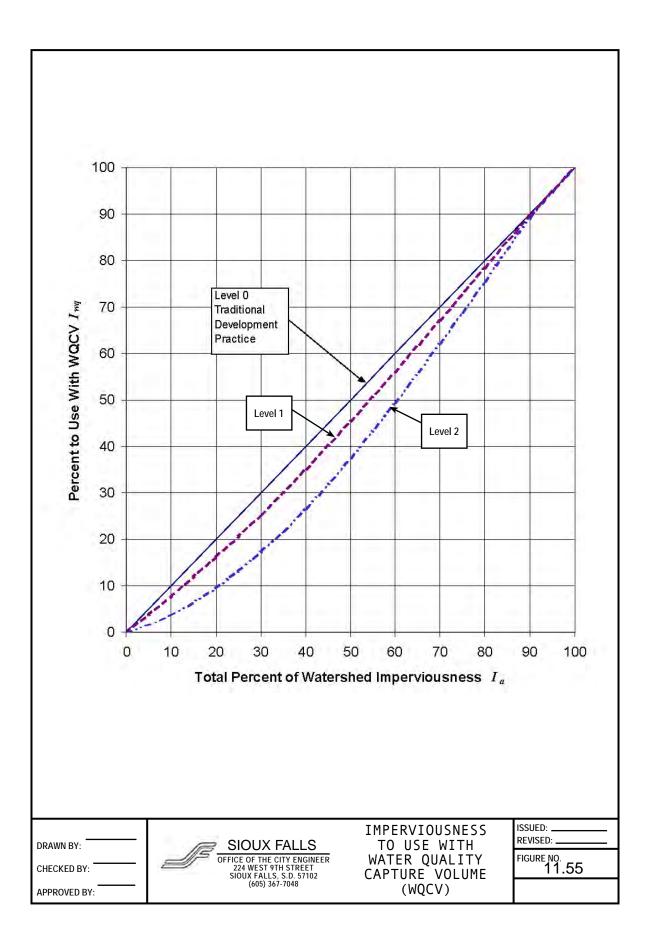
Company: Date: Droject: Docation: Docation: Docation:	mpany:		Design Procedure Form: Po	rous Landscape Detention (PLD)
bate:	ite:	Designer:		
roject:	oject:	Company:		
1. Basin Storage Volume (l ₁ = 100%) if all paved and roofed areas u/s of PLD) A) Thutary Kae's Imperviousness Ratio (i = l ₁ /100) I B) Contributing Watershed Area Including the PLD (Area) I I C) Water Quality Capture Volume (WQCV) (WQCV = 1.26 * 0.8 * (0.91 * l ² - 1.19 * l ² + 0.78 * 1)) WQCV = 0.50 watershed inches D) Design Volume: Volume; Volume (WQCV / 12) * Area Vol = 420.0 cubic feet 2. PLD Surface Area (A _{PLD}) and Average Depth (d _m) A _{PLD} = 450 square feet (d _m : = (Vol / A _{PLD}), Min=0.5', Max=1.0') A _{PLD} = 450 square feet 3. Sand/Peat Mix and Gravel Subbase (See Figure 11.47) A) 67% Sand / 33% Peat Mix with 8' ASSHTO #67 Coarse Aggregate subbase 18' minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase Other:	Basin Storage Volume (l_s = 100% if all paved and rooted areas u/s of PLD) A) Tributary Neta's Imperviousness Ratio (i = l_s / 100) I_s = 100.00 % i = 1.00 B) Contributing Watershed Area Including the PLD (Area) A rea = 10.000 watershed inches A rea = 10.000 watershed inches C) Water Quality Capture Volume (WQCV) (WQCV = 1.28 * 0.8 * (0.91 * l^2 - 1.9 * f^2 - 0.78 * 1)) D) Design Volume: Vol _{FLD} = (WQCV / 12) * Area A rea = 10.000 watershed inches PLD Surface Area (A _{PLD}) and Average Depth (d_w) A _{PLD} =	Project:		
Image: Classic Clasclassic Classic Classic Classic Classic Clas	¹ (L = 100% if all paved and rooted areas us of PLD) ¹ Itibutary Area's Imperviousness Ratio (i = L _x /100) ¹ i = 100.00% ¹ i	Location:		
C) Water Quality Capture Volume (WQCV) (WQCV = 1.26* 0.8* (0.91*1° + 1.19*1° ± 0.78*1)) WQCV = 0.50 watershed inches D) Design Volume: Vol _{PLD} = (WQCV / 12)* Area Vol = 420.0 cubic feet 2. PLD Surface Area (A _{PLD}) and Average Depth (d _{av}) (d _{av} = (Vol / A _{PLD}), Min=0.5', Max=1.0') A _{PLD} = 450 square feet 3. Sand/Peat Mix and Gravel Subbase (See Figure 11.47) A) 67% Sand / 33% Peat Mix with 8* ASSHTO #67 Coarse Aggregate subbase 18* minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase Sis minimum depth sand/peat mix for NRCS Type C) Other Other: 4. Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method Membrane: 4(C) checked and 4(D) = no A) Check box if subgrade is keavy or expansive clay B) Check box if subgrade is well-draining soils Membrane: 4(A) checked or 4(D) = yes C) Check box if subgrade is well-draining soils X D) Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, hardware store, restaurant, etc.? No	C) Water Quality Capture Volume (WQCV) (WQCV = 1.26 * 0.8 * (0.91 * 1 ² + 1.18 * 1 ² + 0.78 * 1)) D) Design Volume: Vole _{1,D} = (WQCV / 12) * Area WQCV = 0.50 watershed inches Vol = 4200 cubic feet PLD Surface Area (A _{PLD}) and Average Depth (d _w) (d _w : = (V0 A _{PLD}), Min=0.5', Max=1.0') A _{PLD} = 450 square feet d _w = 0.93 feet Sand/Peat Mix and Gravel Subbase (See Figure 11.47) A) 67% Sand / 33% Peat Mix with 8' ASSHTO #67 Coarse Aggregate subbase 18' minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase C) Other Other: C) Other Other: Other: Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method Membrane: 4(C) checked and 4(D) = no Check box if subgrade is leavy or expansive clay C Check box if subgrade is leavy or expansive clay C Check box if subgrade is well-draining soils Membrane: 4(A) checked or 4(D) = yes Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals Present, such as gas station, yes no hardware store, restaurant, etc.? Yes no X No Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only Cother:			d
(WQCV = 1.26 * 0.8 * (0.91 * 1 ² - 1.19 * 1 ² + 0.78 * 1)) Design Volume: Vol _{PLD} = (WQCV / 12) * Area 2. PLD Surface Area (A _{PLD}) and Average Depth (d _w) A _{PLD} =	(WQCV = 1.26 * 0.8 * (0.31 * f² + 0.78 * 1)) D) Design Volume: Vol _{PLD} = (WQCV / 12) * Area Vol =	B) Contributing Watershed Area	a Including the PLD (Area)	Area = <u>10,000</u> square feet
(d _w : = (Vol / A _{PLD}), Min=0.5', Max=1.0') d _w = 0.93 feet 3. Sand/Peat Mix and Gravel Subbase (See Figure 11.47) A) 67% Sand / 33% Peat Mix with 8' ASSHTO #67 Coarse Aggregate subbase 18'' minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase 36'' minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase 36'' minimum depth sand/peat mix for NRCS Type C) Other Other: 4. Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method X A) Check box if subgrade is heavy or expansive clay SC (Checked is subgrade is well-draining soils X D) Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, hardware store, restaurant, etc.? Yes no Mo Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only No Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only	(d _w ,: = (Vol / A _{PLD}), Min=0.5', Max=1.0') d _w , = 0.93 feet . Sand/Peat Mix and Gravel Subbase (See Figure 11.47) A) 67% Sand / 33% Peat Mix with 8' ASSHTO #67 Coarse Aggregate subbase X 18" minimum depth sand/peat mix with underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase Soils where underdrain unless in sandy soils (no underdrain req.) C) Other	(WQCV = 1.26 * 0.8 * (0.91 *	* I ³ - 1.19 * I ² + 0.78 * I))	
(d _{ev} : = (Vol / A _{PLD}), Min=0.5', Max=1.0') d _{ev} = 0.93 feet 3. Sand/Peat Mix and Gravel Subbase (See Figure 11.47) A) 67% Sand / 33% Peat Mix with 8' ASSHTO #67 Coarse Aggregate subbase 18'' minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase	(d _w : = (Vol / A _{PLD}), Min=0.5', Max=1.0') d _w = 0.93 feet . Sand/Peat Mix and Gravel Subbase (See Figure 11.47) A) 67% Sand / 33% Peat Mix with 8' ASSHTO #67 Coarse Aggregate subbase X 18" minimum depth sand/peat mix with underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase 36" minimum depth sand/peat mix for NRCS Type D soils where underdrain is not possible C) Other	2. PLD Surface Area (A _{PLD}) and Av	verage Depth (d _{av})	A _{PLD} = 450 square feet
A) 67% Sand / 33% Peat Mix with 8" ASSHTO #67 Coarse Aggregate subbase It 8" minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase 36" minimum depth sand/peat mix for NRCS Type C) Other 36" minimum depth sand/peat mix for NRCS Type D soils where underdrain is not possible 0ther: 4. Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method X A) Check box if subgrade is silty or clayey sands C) Check box if subgrade is well-draining soils X D) Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, hardware store, restaurant, etc.? Yes no Mounderdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only No Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only	A) 67% Sand / 33% Peat Mix with 8" ASSHTO #67 Coarse Aggregate subbase X 18" minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase	(d _{av} : = (Vol / A _{PLD}), Min=0.5', Ma	x=1.0')	
A) 67% Sand / 33% Peat Mix with 8" ASSHTO #67 Coarse Aggregate subbase It 8" minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase 36" minimum depth sand/peat mix for NRCS Type C) Other 36" minimum depth sand/peat mix for NRCS Type D soils where underdrain is not possible 0ther: 4. Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method X A) Check box if subgrade is silty or clayey sands C) Check box if subgrade is well-draining soils X D) Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, hardware store, restaurant, etc.? Yes no Mounderdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only No Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only	A) 67% Sand / 33% Peat Mix with 8" ASSHTO #67 Coarse Aggregate subbase X 18" minimum depth sand/peat mix with underdrain unless in sandy soils (no underdrain req.) B) 67% Sand / 33% Peat Mix with no aggregate subbase	3. Sand/Peat Mix and Gravel Subb	pase (See Figure 11.47)	
B) 67% Sand / 33% Peat Mix with no aggregate subbase	B) 67% Sand / 33% Peat Mix with no aggregate subbase 36" minimum depth sand/peat mix for NRCS Type C) Other D soils where underdrain is not possible c) Other			
C) Other Other: 4. Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method A) Check box if subgrade is heavy or expansive clay Infiltration to Subgrade with Permeable B) Check box if subgrade is heavy or expansive clay Infiltration to Subgrade with Permeable B) Check box if subgrade is well-draining soils Inderdrain with Impermeable C) Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, yes no hardware store, restaurant, etc.? No No Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only	C) Other Other:	00 0		36" minimum depth sand/peat mix for NRCS Type
4. Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method A) Check box if subgrade is heavy or expansive clay B) Check box if subgrade is subgrade is subgrade is well-draining soils C) Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, yes no hardware store, restaurant, etc.? X Infiltration to Subgrade with Permeable Membrane: 4(B) checked and 4(D) = no Membrane: 4(B) checked and 4(D) = no	Draining of PLD (Check A, or B, or C, answer D) Based on answers to 4A through 4D, check the appropriate method (Check box if subgrade is heavy or expansive clay (Check box if subgrade is silty or clayey sands (Check box if subgrade is well-draining soils (Check box if subgrade is well-drain with Permeable Membrane: (A) checked and 4(D) = no (A) checked and 4(D) = no (Dher: (Check box if subgrade is well-drain with Impermeable Membrane: (B) checked - Evapotranspiration only (Check box if subgrade is well-drain wel			
Based on answers to 4A through 4D, check the appropriate method Membrane: 4(C) checked and 4(D) = n0 A) Check box if subgrade is heavy or expansive clay Image: Construction of the constructio	Based on answers to 4A through 4D, check the appropriate method Membrane: 4(C) checked and 4(D) = no Check box if subgrade is slity or clayey sands Image: Clayer clay	C) Other		Other:
A) Check box if subgrade is heavy or expansive clay	 Check box if subgrade is heavy or expansive clay Check box if subgrade is silty or clayey sands Check box if subgrade is well-draining soils X Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, yes no hardware store, restaurant, etc.? X Membrane: 4(A) checked or 4(D) = yes Underdrain with Permeable Membrane: 4(B) checked and 4(D) = no No Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only Other: 			
B) Check box if subgrade is sitly or clayey sands) Check box if subgrade is silty or clayey sands	-		
D) Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, yes no hardware store, restaurant, etc.? Molected and 4(D) = no No Underdrain with Impermeable Membrane: 3(B) checked and 4(D) = no	Does tributary catchment contain land uses that may have petroleum products, greases, or other chemicals present, such as gas station, yes no hardware store, restaurant, etc.? Underdrain with Permeable Membrane: 4(B) checked and 4(D) = no No Underdrain with Impermeable Membrane: 3(B) checked - Evapotranspiration only Other:	B) Check box if subgrade is silty or	clayey sands	
present, such as gas station, yes no hardware store, restaurant, etc.? X 3(B) checked - Evapotranspiration only	present, such as gas station, yes no hardware store, restaurant, etc.? X	D) Does tributary catchment contain	n land uses that may have	
	Other:			
Other:		hardware store, restaurant, etc.?	? X	3(B) checked - Evapotranspiration only
	Notes:			Other:
Notes:		Notes:		
				ISSUED.
				ISSUED:
		Y:		

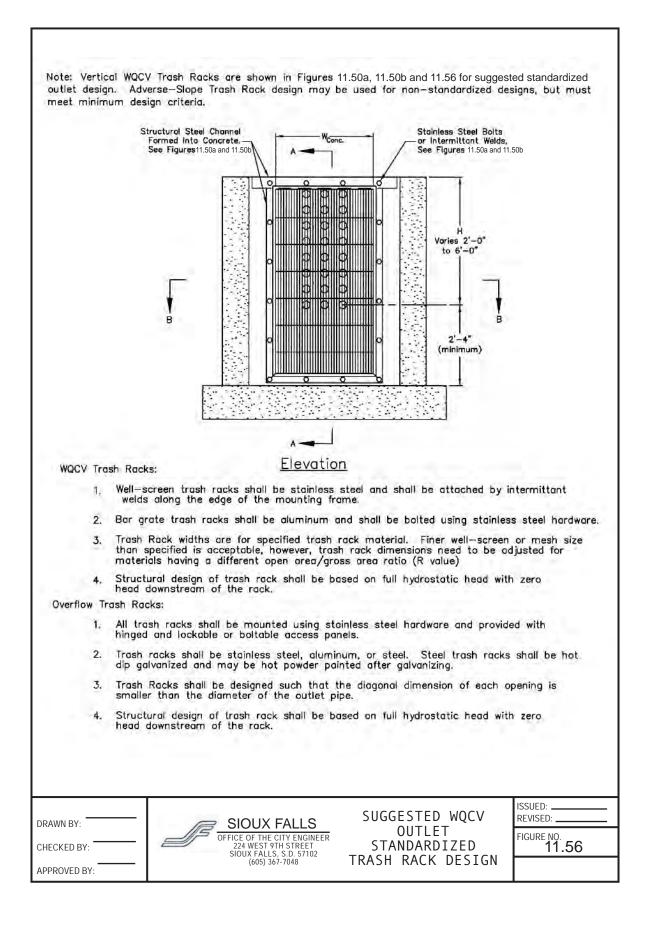





	Typical Outlet Structure Notes:
1.	The details shown are intended to show design concepts. Preparation of final design plans, addressing details of structural adequacy, excavation, foundation preparation, concrete work, reinforcing steel, backfill, metalwork, and appurtenances, including preparation of technical specifications, are the responsibility of the design engineer.
2.	Alternate designs to the typical outlet structures shown may be considered; however, alternate designs must address the hydraulic and trash handling functional elements of the structures shown.
3.	Wingwalls shown are intended to enable the structure to be backfilled to be flush with the side slopes of the basin, which is the recommended geometry. Other geometries may be considered if their designs related to public safety, aesthetics, maintainability, and function are equal to or better than the designs shown.
4.	Permanent Water Surface shown refers to micro-pool for Extended Detention Basin or permanent pool for Constructed Wetland Basin or Retention Pond.
5.	An orifice plate is shown as the outflow control; however, an upturned pipe, with orifices may also be used. See Figure 11.53 for orifice design information.
6.	A Vertical Trash Rack option is generally shown; however, an Adverse-Slope Trash Rack may also be used. Continuous-Slope Trash Racks for use with WQCV outlets are not recommended. See Figure 11.56 for trash rack design information.
7.	References are made to 2- or 10-year detention above the WQCV; however, detention above the WQCV may be sized for any storm event.
8.	The underdrain, including a shutoff valve, from the perimeter of the pond is required for a Wetland Basin and a Retention Pond. An underdrain, without a shutoff valve, is optional for the micro-pool and may be used to help dry the micro-pool during dry-weather periods.
9.	When outlet designs differ from those shown herein:
a)	Provide needed orifices that are distributed over the vertical height of the WQCV, with the lowest orifice located at 2'-6" or more above the bottom of the micro-pool.
b)	Provide full hydraulic calculations demonstrating that the outlet will provide no less than the minimum required drain time of the Water Quality Capture Volume for the BMP type being designed.
c)	All outlet openings (i.e., orifices) shall be protected by a trash rack sized to provide a minimum net opening area called for by Figure 11.57, and all trash rack opening dimensions shall be smaller than the smallest dimension of the outlet orifices.
d)	Trash racks shall be manufactured from stainless steel or aluminum alloy structurally designed to not fail under a full hydrostatic load on the upstream side.
DRAWN BY:	SIOUX FALLS TYPICAL ISSUED: REVISED:
CHECKED BY:	OFFICE OF THE CITY ENGINEER OUTLET FIGURE NO. 224 WEST 9TH STREET STRUCTURE 11 50c
APPROVED BY	(605) 367-7048 GENERAL NOTES

F


٦.



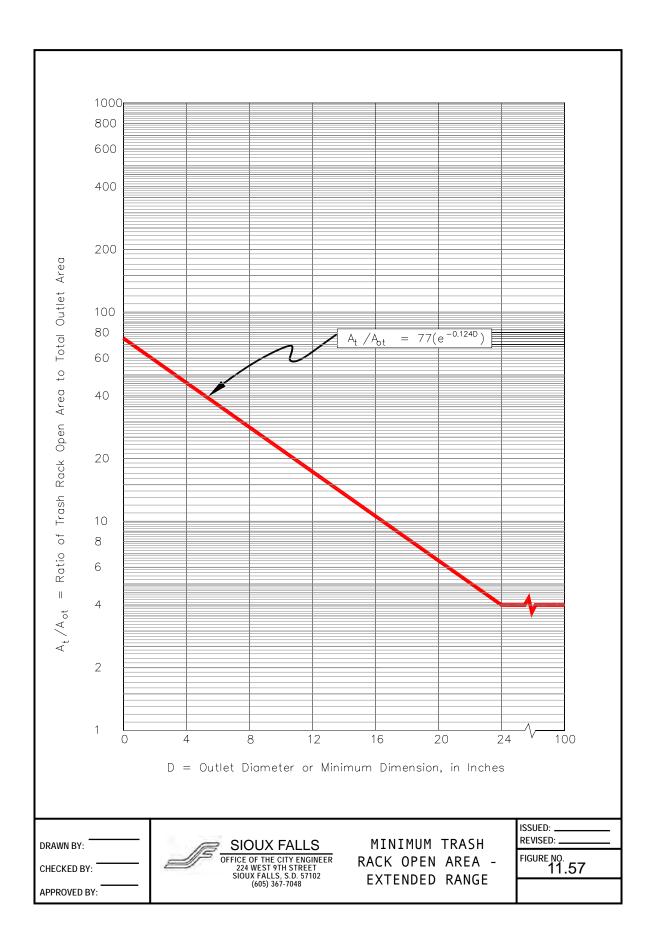
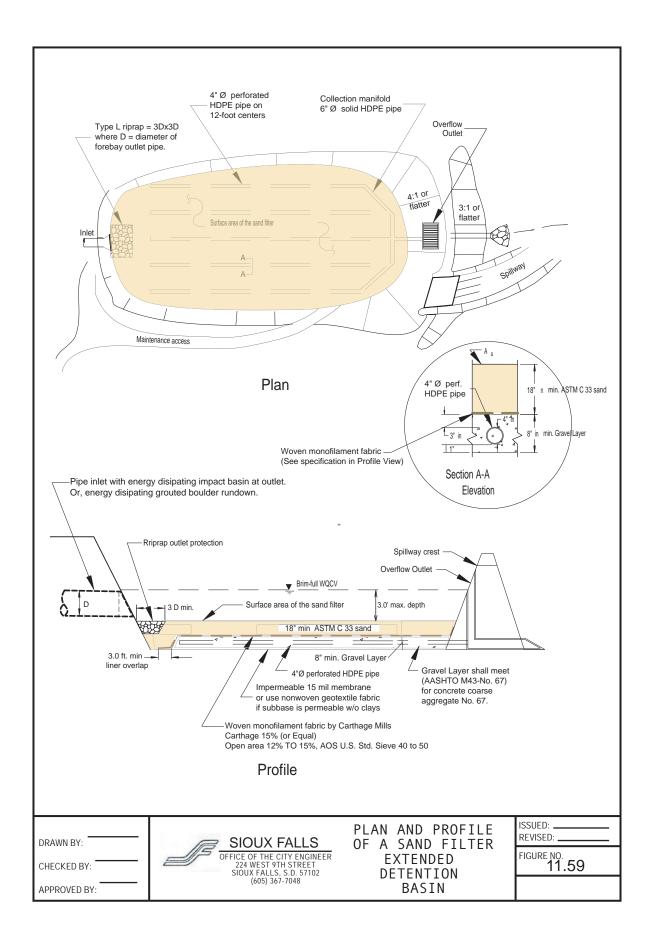
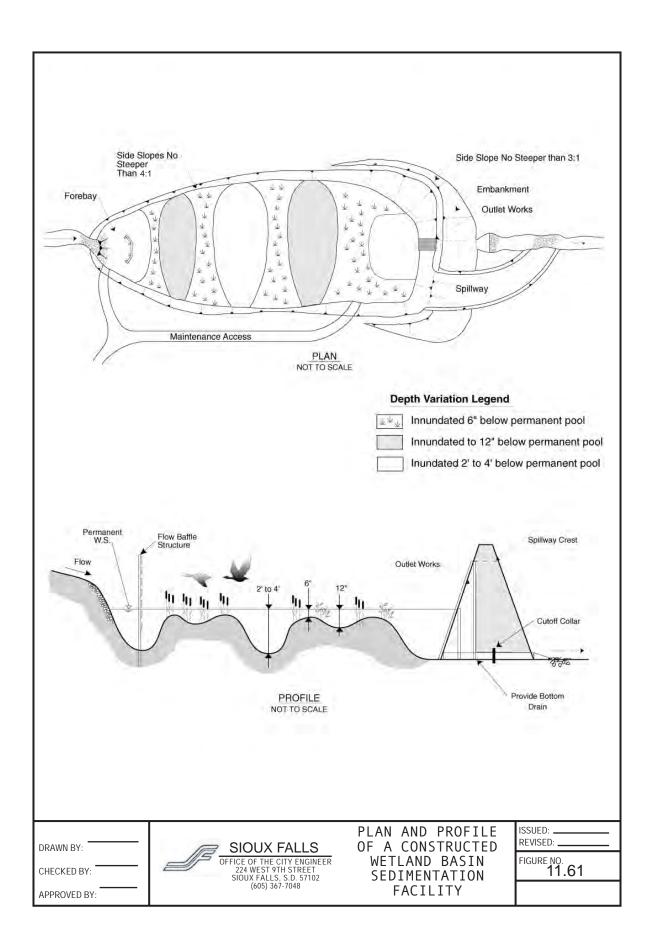
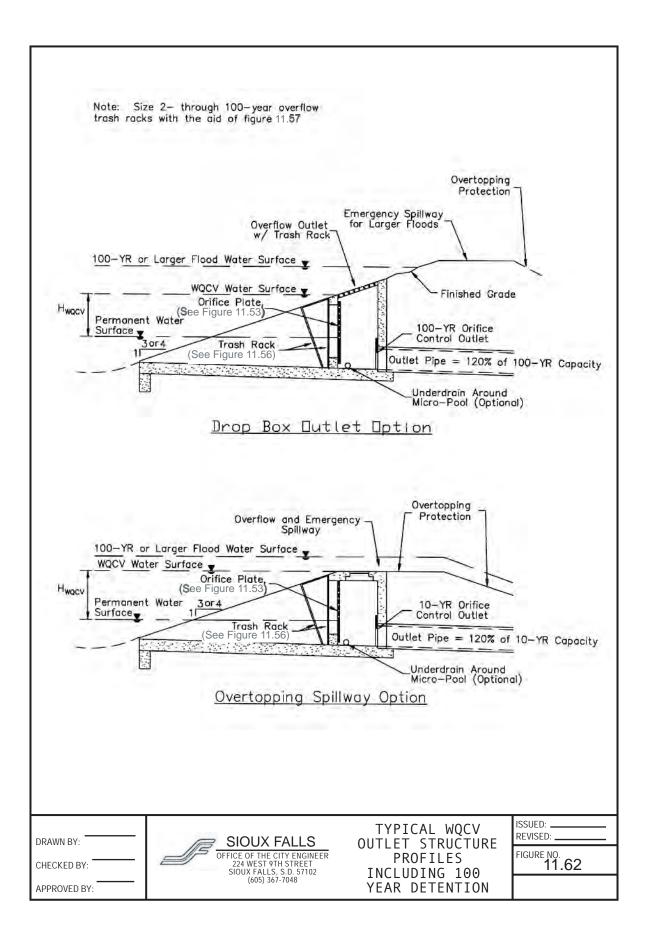
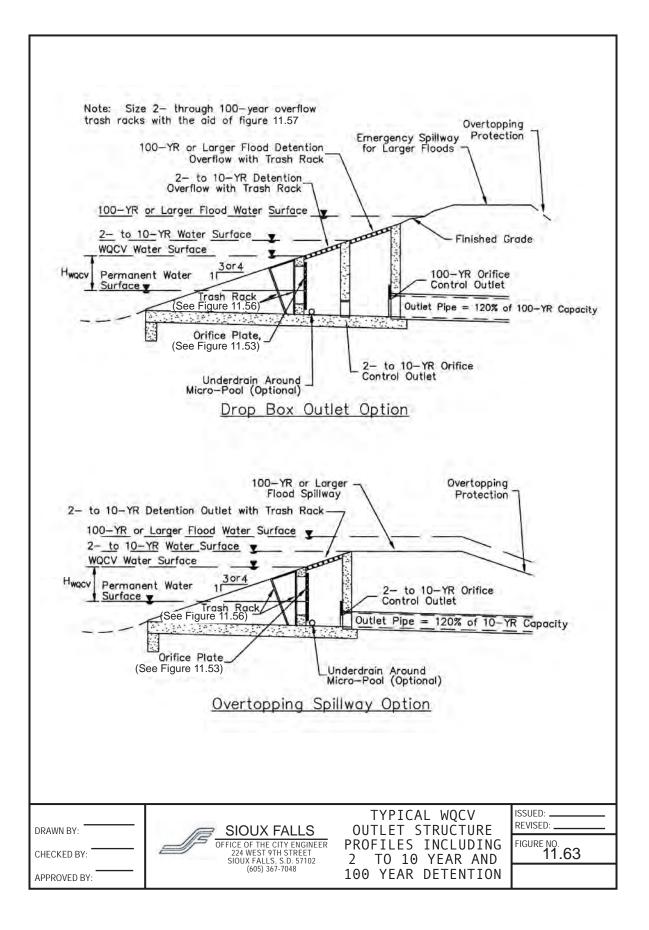


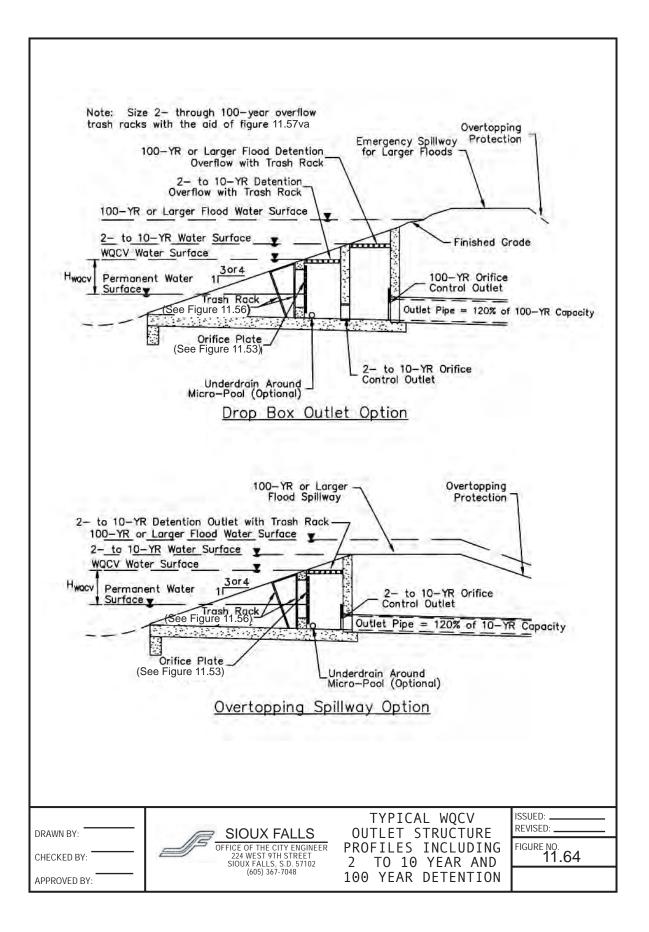
	Chart may t	-		-	te or ve per Row (be outlet.	
	(in) *	(in) 0.250	(in)	n=1 0.05	n=2	n=3		
	5/16	0.313	1 2	0.08	0.10	0.15		
	3/8	0.375	2	0.11	0.22	0.33		
	1/2	0.500	2	0.20	0.30	0.45		
	9/16 5/8	0.563	3	0.25	0.50	0.75		
	11/16	0.625	3	0.31	0.61	0.92		
	3/4	0.750	3	0.44	0.88	1.33		
	7/8	0.813	3	0.52	1.04 1.20	1.56		
	15/16	0.938	3	0,69	1.38	2.07		
	1 1/16	1.000	4	0,79	1.57	2.35		
	1 1/8	1.125	4	0.99	1.99	2.98		
	1 3/16	1.188	4	1.11	2.22 2.45	3.32 3.68		
	1 5/16	1.313	4	1.35	2.71	4.06		
	1 3/8	1.375	4	1.48	2.97	4.45		
	1 1/2	1.500	4	1.77	3.53	5.30		
	1 9/16	1.563	4	1.92	3.83	5.75 6.22		
	1 11/18	1.688	4	2.24	4.47	6.71		
	1 3/4	1.750	4	2.41	4.81	7.22		
	1 7/8	1.875	4	2.75	5.52	8.28		
	1 15/16	1.938	4	2.95	5.90 6.28	8.84 9.42		
		n = Num		lumns of p				
		imum stee te thicknes		1/4 *	5/16 *	3/8 -		
	* De:	igner may	interpolat	e to the m quired area				
Dave have been been	D. C. H	~						
Rectangular	Perforatio	n Siz	ing				-	live set of
Only one col	umn of rectan	gular per	rforation	ns allowe	ed,		Rectangu Hole Widt	lar Min. Steel h Thickness
Seat 2 million from the	Height = 2 inc						5"	1/4 "
					- P		6"	1/4 "
Rectangular	Width (inches)	= Requi	red Are	a per R 2"	ow (sq)	n)	7"	5/32 "
				2			8"	5/16 "
							9"	11/32 "
							10"	3/8 *
							>10"	1/2 "

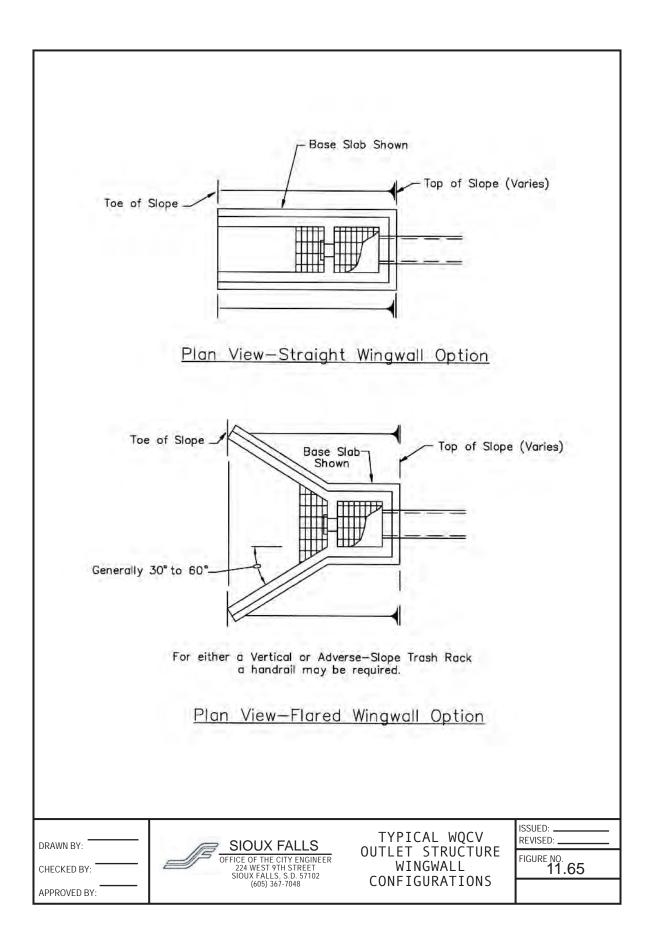


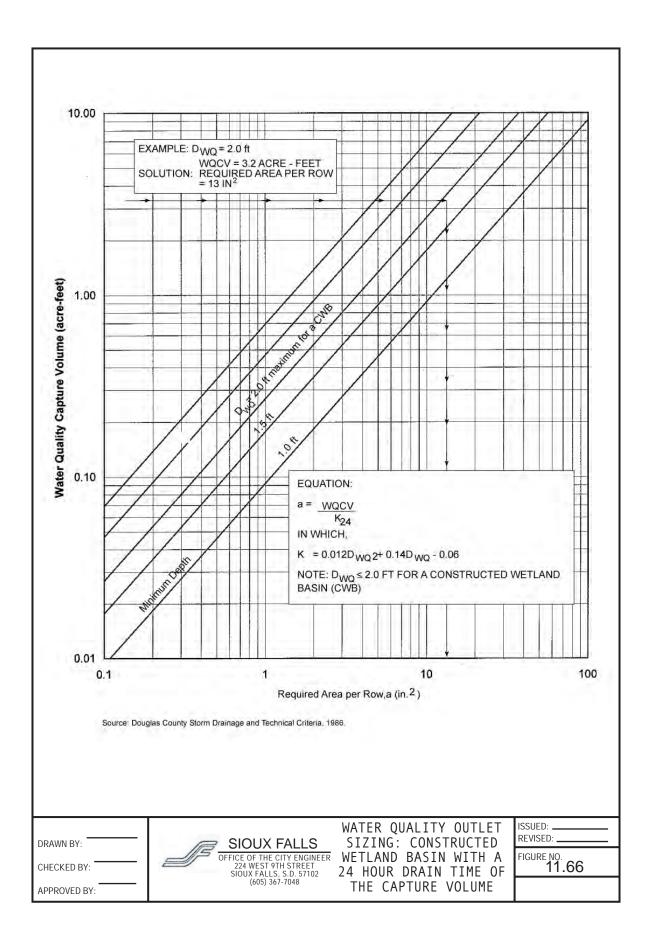

Design Procedure Form: Extended Deten	
Designer:	Sheet 1 c
Company:	
Date: Project:	
Location:	
1. Basin Storage Volume	
A) Tributary Area's Imperviousness Ratio (i = $I_{\rm a}/$ 100)	$I_a = 50.00$ % i = 0.50
B) Contributing Watershed Area (Area)	Area = <u>100.00</u> acres
C) Water Quality Capture Volume (WQCV) (WQCV = 1.26 * 1.0 * (0.91 * 1 ³ - 1.19 * 1 ² + 0.78 * I))	WQCV = 0.26 watershed inches
(WQCV = 1.20 1.0 (0.91 1 - 1.19 1 + 0.78 1)) D) Design Volume: Vol = (WQCV / 12) * Area * 1.2	Vol = <u>2.599</u> acre-feet
2. Outlet Works	
A) Outlet Type (Check One)	X Orifice Plate
	Perforated Riser Pipe Other:
B) Depth at Outlet Above Lowest Perforation (H)	H = <u>4.00</u> feet
C) Required Maximum Outlet Area per Row, (A_0)	$A_0 = 2.19$ square inches
 D) Perforation Dimensions (enter one only): i) Circular Perforation Diameter OR 	D = 1.125 inches, OR
ii) 2" Height Rectangular Perforation Width	W = inches
E) Number of Columns (nc, See Table 11.13a For Maximum)	nc = 2 number
F) Actual Design Outlet Area per Row (A_o)	$A_o = 1.99$ square inches
G) Number of Rows (nr)	nr = <u>12</u> number
H) Total Outlet Area (A _{ot})	A _{ot} = <u>23.86</u> square inches
3. Trash Rack	
A) Needed Open Area: A_t = 0.5 * (Figure 11.57 Value) * A_{ot}	A _t = <u>799</u> square inches
B) Type of Outlet Opening (Check One)	X ≤ 2" Diameter <u>Round</u> 2" High <u>Rectangular</u>
C) For 2", or Smaller, Round Opening (Ref.: Figure 11.50b):	Other:
 Width of Trash Rack and Concrete Opening (W_{conc}) from Table 11.13a 	W _{conc} = <u>24</u> inches
ii) Height of Trash Rack Screen (H_{TR}) H	TR = 78 inches
I	
BY: SIOUX FALLS	DESIGN PROCEDURE FORM: EXTENDED DETENTION BASIN SEDIMENTATION

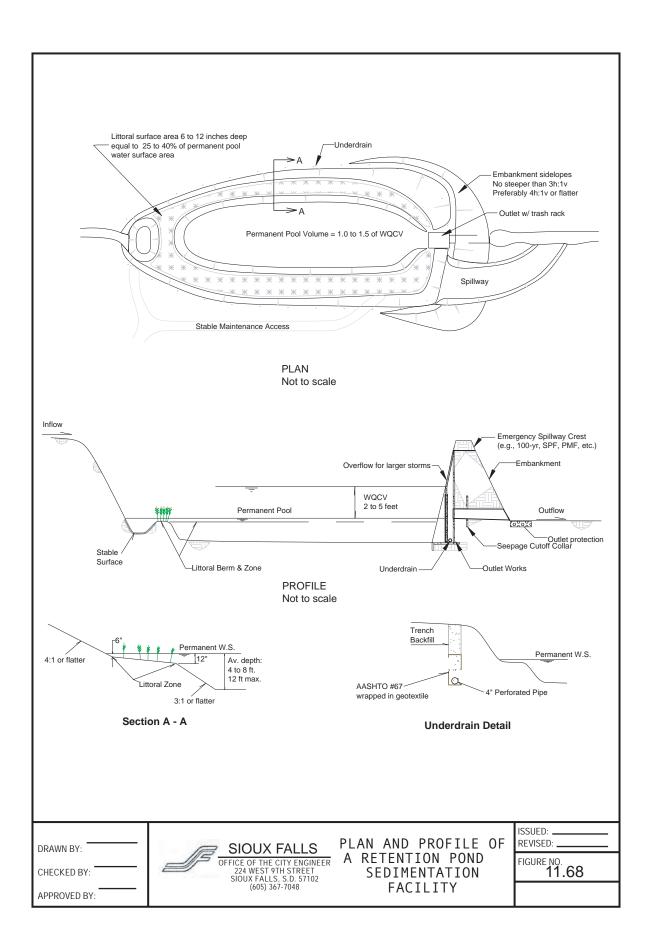

Designer: Company: Date: Project: Location:	sign Procedure Form: Extended Detention		Sheet 2 of
iii) Type of Scree	n (Based on Depth H), Describe if "Other"	X S.S. #93 VEE Wire (US Filte	er)
iv) Screen Openir	g Slot Dimension, Describe if "Other"	0.139" (US Filter)	
v) Spacing of Su Type and Siz	oport Rod (O.C.) ∋ of Support Rod (Ref.: Table 11.13b)	1.00 inches TE 0.074 in. x 0.75 in.	
vi) Type and Size	e of Holding Frame (Ref.: Table 11.13b)	1.00 in. x 1.50 in. angle	
D) For 2" High Rect	angular Opening (Refer to Figure 11.50a):		
I) Width of Recta	ngular Opening (W)	W =inches	
ii) Width of Perfor	ated Plate Opening (W _{conc} = W + 12")	W _{conc} = inches	
iii) Width of Trash	rack Opening ($W_{opening}$) from Table 11.14a	W _{opening} = inches	
iv) Height of Tras	h Rack Screen (H _{TR}) H	TR = inches	
v) Type of Screer	(based on depth H) (Describe if "Other")	Klemp [™] KPP Series Alumin Other:	um
	acing (Based on Table 11.14a, Klemp [™] KPP cribe if "Other"	inches Other:	
	ring Bar Size (Klemp [™] Series, Table 11.14b) on depth of WQCV surcharge)		
4. Detention Basin lenç	th to width ratio	(L/W)	
5 Pre-sedimentation F	orebay Basin - Enter design values		
A) Volume (no less	than 5% of Design Volume from 1D)	0.200 acre-feet	
B) Surface Area		0.069acres	
C) Connector Pipe I (Size to drain th	Diameter is volume in 15-minutes under inlet control)	<u> 6 inches</u>	
D) Paved/Hard Bott		yesyes/no	
		DESIGN PROCEDURE	ISSUED:
N BY:	SIOUX FALLS	FORM: EXTENDED	REVISED:
ED BY:	OFFICE OF THE CITY ENGINEER	DETENTION BASIN	FIGURE NO. 11.5
	SIOUX FALLS, S.D. 57102 (605) 367-7048	SEDIMENTATION FACILITY	

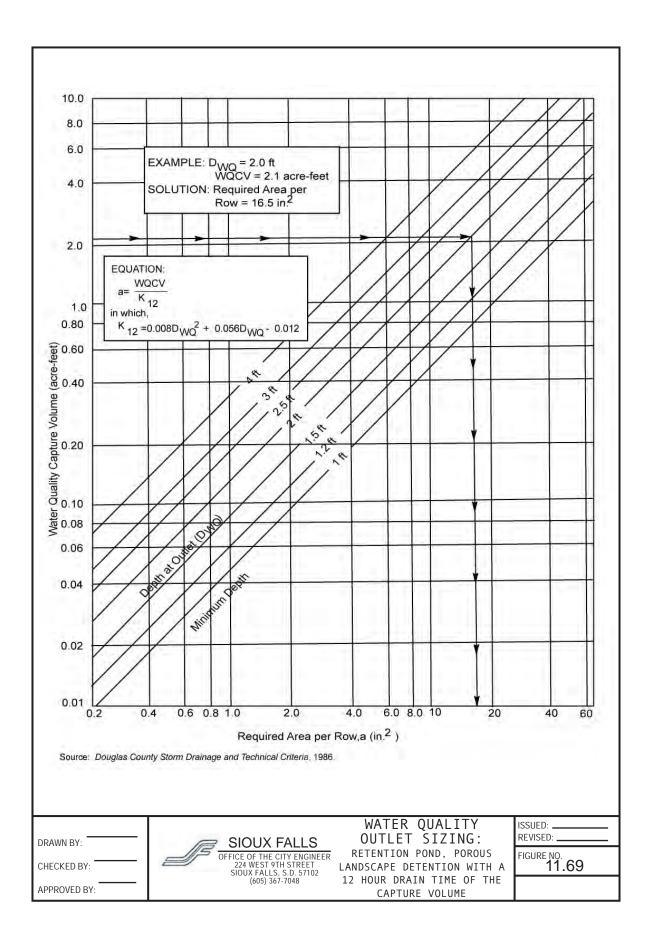

De	esign Procedure Form: Extended Detention Basir	(EDB) - Sedimentation Facility	
Designer: Company: Date: Project:			Sheet 3 o
Location:			
6. Two-Stage Design	- See Figure 11.51		
A) Top Stage (Dep	th $D_{WQ} = 2'$ Minimum)	$D_{WQ} = 2.00$ feet Storage= 2.250 acre-feet	
	Hepth (D_{BS} = 1.0' Minimum, 2.0' Maximum) Storage (no less than 3% of Design Volume (0.0779625 acre-feet.)	$\begin{array}{c} D_{BS} = \underbrace{2.00 \text{feet}} \\ \text{Storage} = \underbrace{0.250 \text{acre-feet}} \\ \text{Surf. Area} = \underbrace{0.125 \text{acres}} \\ \end{array}$	
	imum Depth = the Larger of e Depth (1 ') or 2.5 '	Depth= 2.50 feet Storage= 0.020 acre-feet Surf. Area= 0.008 acres	
,	Vol _{tot} = Storage from 5A + 6A + 6B sign Volume in 1D, or 2.59875 acre-feet.)	Vol _{tot} = <u>2.700</u> acre-feet	
7. Basin Side Slopes Minimum Z = 4, Fla	(Z, horizontal distance per unit vertical) tter Preferred	Z = <u>5.00</u> (horizontal/vert	ical)
	Side Slopes (Z, horizontal distance) inimum Z = 3, Flatter Preferred	Z = <u>4.00</u> (horizontal/vert	ical)
9. Vegetation (Check	the method or describe "Other")	X Native Grass Irrigated Turf Grass Other:	
Notes:			
		SIGN PROCEDURE	ISSUED:




		and Filter Basin (SFB)	
Designer:			
Company:			
Date: Project:			
Location:			
1. Basin Storage Volu	me		
0	Imperviousness Ratio (i = I _a / 100)	$I_a = 50.00 \%$ i = 0.50	
B) Contributing Wa	atershed Area (Area)	Area = <u>40.00</u> acres	
	Capture Volume (WQCV) * 1.0 * (0.91 * I ³ - 1.19 * I ² + 0.78 * I))	WQCV = 0.26 watershed inches	
	: Vol = (WQCV / 12) * Area	Vol = 0.866 acre-feet	
2 Minimum Filter Suu	face Area: A _s = (Vol / 3) * 43,560	A _s = 12,578 square feet	
Filter Surface Eleva		5478.50 feet	
Average Side Slop	e of the Filter Basin (4:1 or flatter)	Z =4.0	
3. Estimate of Basin I	Depth (D), based on filter area A_s	D = 2.6 feet	
4. Outlat Wester			
4. Outlet Works			
A) Sand (ASTM C	·33) Layer Thickness (18" min.)	18inches	
	ament Fabric Between Sand & Gravel - arthage 15% (or equal)	X Carthage Mill, Carthage 15% Other:	
-	O No. 67) Layer Thickness (8" min.)		
		8inches	
	tion At Top of Design Volume Elev. + Estimate of Basin Depth (D))	<u>5481.10</u> feet	
5. Draining of porous	pavement (Check A, or B, or C, answer D) to 5A through 5D, check the appropriate method	Infiltration to Subgrade with Perme Membrane: 5(C) checked and 5(D) = no	eable
	ade is heavy or expansive clay	X Underdrain with Impermeable Membrane: 5(A) checked or 5(D) = yes	
	ade is silty or clayey sands ade is well-draining soils X		
D) Does tributary catc	hment contain land uses that may have	Underdrain with Permeable Memb 5(B) checked and 5(D) = no	rane:
petroleum products present, such as ga	a, greases, or other chemicals as station, yes no	Other:	
hardware store, res			
6. Describe Provision	s for Maintenance		
Notes:			
DV.	SIOUX FALLS	DESIGN	ISSUED: REVISED:
BY:	OFFICE OF THE CITY ENGINEER	PROCEDURE	FIGURE NO. 11.60



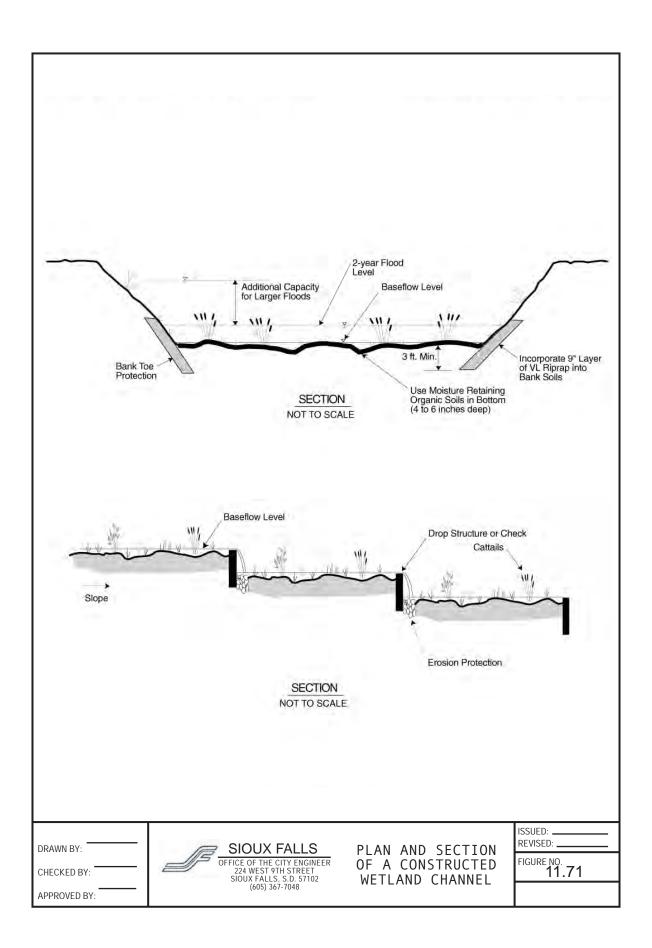


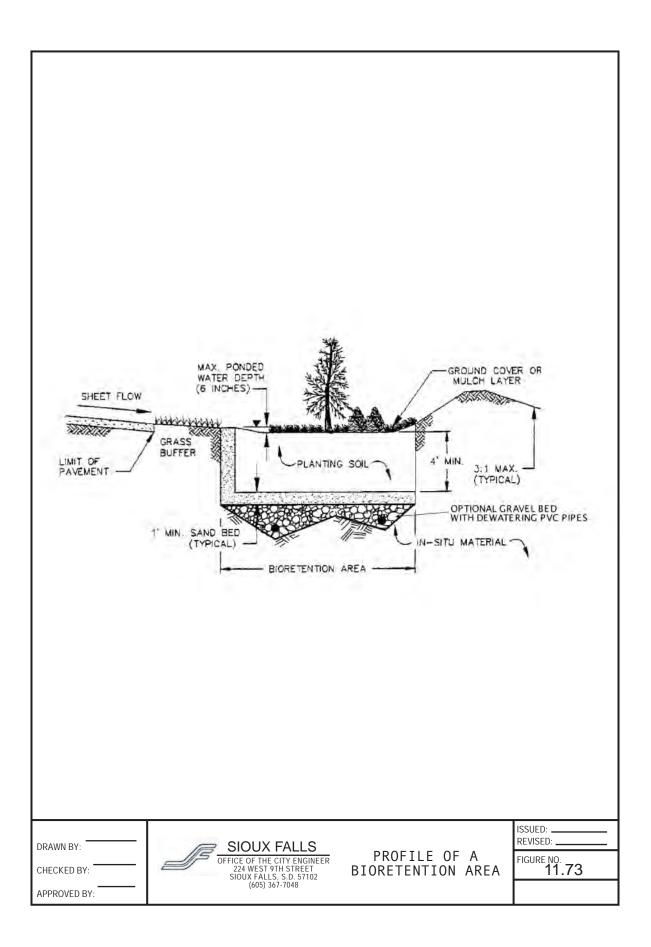


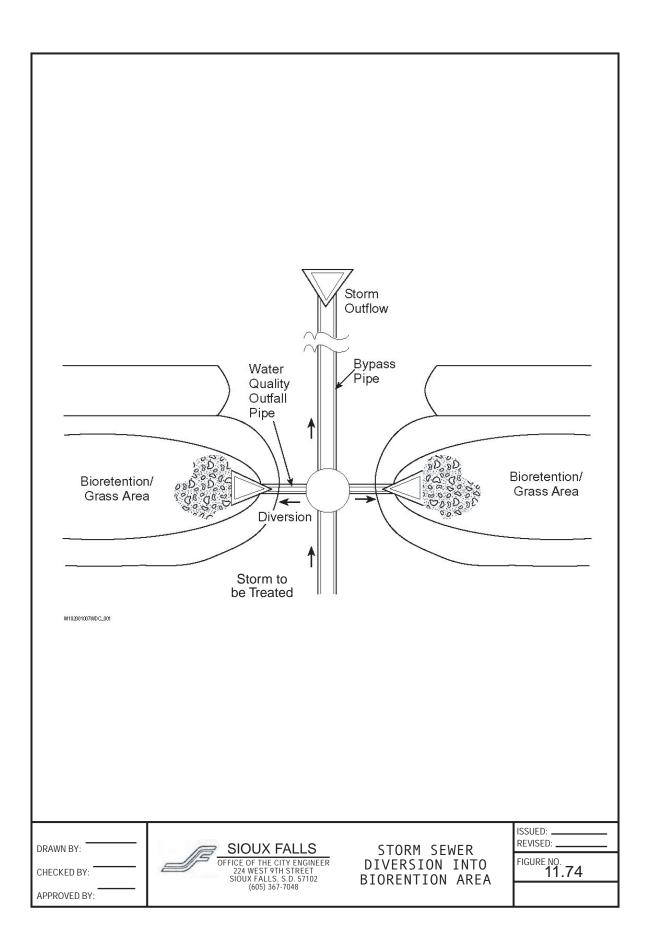
Designer: Company: Date: Project: Location:		Sheet 1 o
1. Basin Storage Volume	l _a = 50.00 %	
A) Tributary Area's Imperviousness Ratio (i = $\rm I_a/$ 100)	$l_a = 50.00 \%$ i = 0.50	
B) Contributing Watershed Area (Area)	Area = <u>50.00</u> acres	
 C) Water Quality Capture Volume (WQCV) (WQCV = 1.26 * 0.9 * (0.91 * I³ - 1.19 * I² + 0.78 * I)) D) Design Volume: Vol = (WQCV / 12) * Area 	WQCV = 0.23 watershed Vol = 0.9745 acre-feet	inches
2. Wetland Pond Volume, Depth, and Water Surface Area		
A) Minimum Calculated Permanent Pool: $Vol_{Pool} \ge 0.75 * Vol$	Calculated Required Minimums:Vol _{Pool} ≥0.7309acre-feet	
	WS Area = 0.4873 acres, estin <u>Enter the Actual Design Values:</u> Vol _{Pool} ≥ 0.8000 acre-feet, f WS Area = 0.5000 acres, final	inal design
B) Forebay (Volume > 5% of Vol in 1D, or 0.0487 acre-feet) Depth minimum = 2.5', maximum = 4.0'	Volume= <u>0.0500</u> acre-feet Depth= <u>3.50</u> feet Area= <u>0.0143</u> acres, % =	2.86
C) Outlet Pool (minimum depth = 2.5', maximum = 4.0') Outlet Pool Area, 6% of Design WS Area, or 0.03 acres, minimum	Depth= <u>3.00</u> feet Area= <u>0.0300</u> acres, % =	6.0
D) Wetland Zones with Emergent Vegetation (0.50' to 1.0' deep) (Area = 50% to 70% of Design WS Area, or 0.25 to 0.35 acres.)	Depth= 0.75 feet Area= 0.3000 acres, % =	60.00
E) Free Water Surface Areas (2' to 4' deep) (Area = 30% to 50% of Design WS Area, or 0.15 to 0.25 acres.)	Depth= <u>3.50</u> feet Area= <u>0.1557</u> acres, % =	31.14
3 Average Side Slope Above Water Surface (4:1 or flatter)	Z =4.00	
A) Depth of WQCV Surcharge (above permanent pool, 2' max.)	1.8 feet	
4. Outlet Works		
A) Outlet Type (Check One)	X Orifice Plate Perforated Riser Pipe Other:	
B) Depth at Outlet Above Lowest Perforation (H, 2' max.)	H = <u>1.80</u> feet	
C) Required Maximum Outlet Area per Row, (A_o)	A _o = <u>4.22</u> square incl	hes
 D) Perforation Dimensions (Refer to Figure 11.54): (Enter one only): 		
 i) Circular Perforation Diameter OR ii) 2" Height Rectangular Perforation Width 	D =inches, OR W =inches	2
	DESIGN FROCEDORE	ED: SED:
SIOUX FALLS OFFICE OF THE CITY ENGINEER	FURM: CUNSIRUCIED	RE NO.
BY: 224 WEST 9TH STREET	SEDIMENTATION	11.6

Designer:	
E) Number of Columns (nc)	nc = <u>1</u> Number
F) Actual Design Outlet Area per Row (A_o) A	_o = <u>3.75</u> square inches
G) Number of Rows (nr)	nr = <u>5</u> Number
H) Total Outlet Area (A _{ot}) A	ot = 20.25 square inches
5. Trash Rack	
A) Needed Open Area: At = 0.5 * (Figure 11.57 Value) * $A_{\rm ot}$	A _t = <u>608.39</u> square inches
B) Type of Outlet Opening (Check One)	≤ 2" Diameter <u>Round</u> 2" High <u>Rectangular</u> Other:
C) For 2", or Smaller, Round Opening (Ref.: Figure 11.50b):	
i) Width of Trash Rack and Concrete Opening	W _{conc} = inches
(W _{conc}) from Table 11.13a ii) Height of Trash Rack Screen (H _{TR}) H	TR = inches
iii) Type of Screen (Based on Depth H), Describe if "Other"	S.S. #93 VEE Wire (US Filter)Other:
iv) Screen Opening Slot Dimension, Describe if "Other"	0.139" (US Filter) Other:
 v) Spacing of Support Rod (O.C.) Type and Size of Support Rod (Ref.: Table 11.13b) 	inches
vi) Type and Size of Holding Frame (Ref.: Table 11.13b)	
D) For 2" High Rectangular Opening (Refer to Figure 11.50a):	
I) Width of Rectangular Opening (W)	W = <u>1.875</u> inches
ii) Width of Perforated Plate Opening (W $_{conc}$ = W + 12")	W _{conc} = <u>13.88</u> inches
iii) Width of Trashrack Opening (W $_{\mbox{\scriptsize opening}}$) from Table 11.14a	W _{opening} = 24.0 inches
iv) Height of Trash Rack Screen (H _{TR}) H	TR = 46 inches
v) Type of Screen (based on depth H) (Describe if "Other")	Klemp [™] KPP Series Aluminum Other:
vi) Cross-bar Spacing (Based on Table 11.14a, Klemp [™] KPP Grating). Describe if "Other"	2 inches Other:
D	ESIGN PROCEDURE DRM: CONSTRUCTED

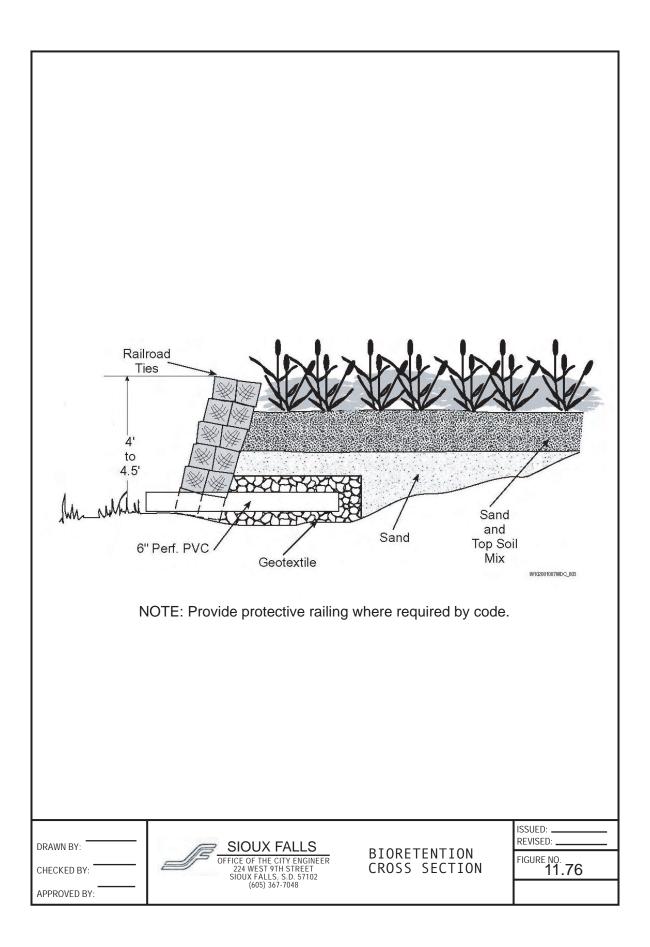
Design Procedure Form: Constructed Wetlar	nd Basin (CWB) - Sedimentation Facility
Designer: Company: Date: Project: Location:	Sheet :
vii) Minimum Bearing Bar Size (Klemp [™] Series, Table 11.14b) (Based on depth of WQCV surcharge)	<u>1.00 in. x 3/16 in.</u>
6. Basin Use for Quantity Controls (Check one or describe if "Other")	X Detention within the facility Detention upstream of the facility Other:
7. Basin length to width ratio	(L/W)
8. Basin Side Slopes (Z, horizontal distance per unit vertical)	(horizontal/vertical)
9 Annual/Seasonal Water Balance (Q _{net} has to be positive)	$\begin{array}{c} Q_{inflow} \\ Q_{evap} \\ Q_{seepage} \\ Q_{E.T.} \end{array} \begin{array}{c} 362.00 \\ 1.40 \\ 2.80 \\ acre-feet/year \\ 2.80 \\ acre-feet/year \\ 1.50 \\ acre-feet/year \\ Q_{net} \end{array}$
10 Vegetation (Check the method being applied or describe)	Native Grass X Irrigated Turf Grass Side Slope: Wetland Species in Pool* Other:
	*Describe Species Density and Mixl.
Notes:	
	DESIGN PROCEDURE

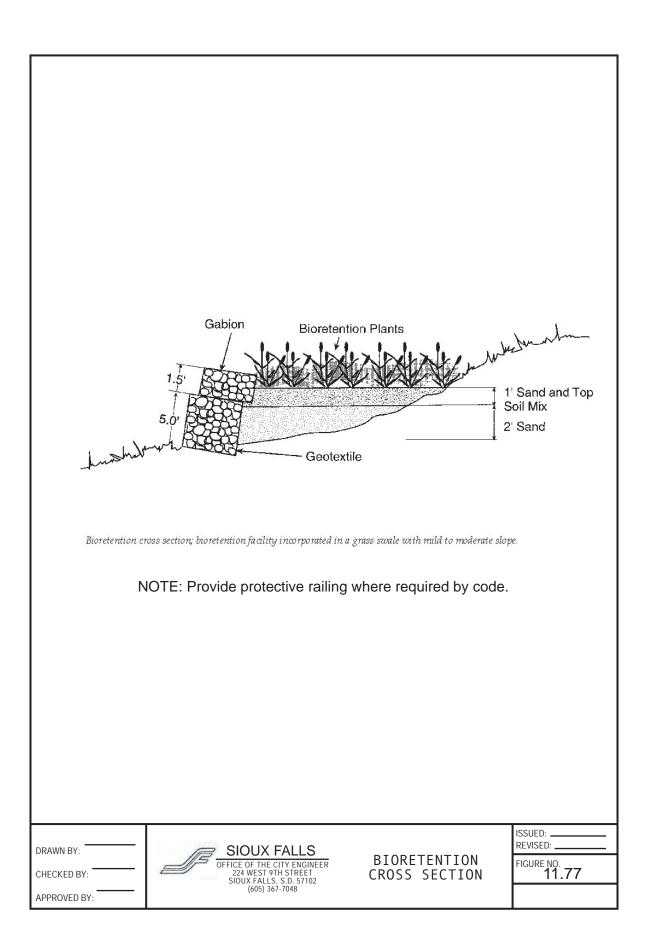


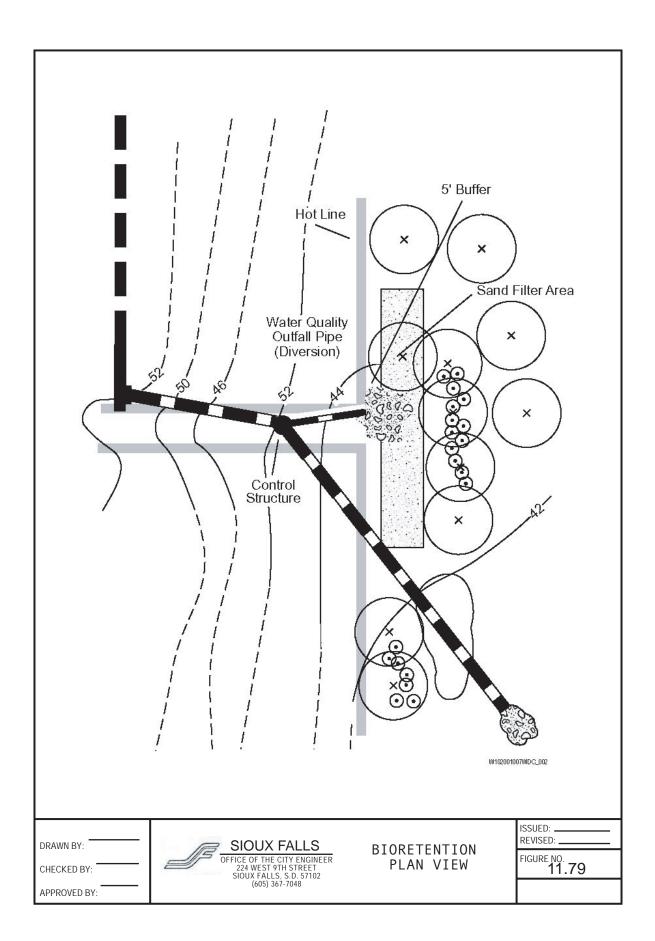

	Design Procedure Form: Retention Pond (RP) - Sed	imentation Facility
Designer: Company: Date: Project:		(Sheet 1
Location:		
1. Basin Storag	e Volume	l _a = 50.00 %
A) Tributary	Area's Imperviousness Ratio (i = $I_a/100$)	$i_a = \frac{30.00}{0.50}$
B) Contribut	ing Watershed Area (Area)	Area = <u>100.00</u> acres
(WQCV	uality Capture Volume (WQCV) = 1.26 * 0.8 * (0.91 * I ³ - 1.19 * I ² + 0.78 * I)) folume: Vol = (WQCV / 12) * Area	WQCV = <u>0.21</u> watershed inches Vol = <u>1.73</u> acre-feet
2. Permanent F	·····	
A) Volume:	Vol-Pool = (1.0 to 1.5) * Vol in 1D, or 1.733 to 2.599 acre-feet	Vol-Pool = 2.00 acre-feet
B) Average	Depth Zone 1 = Littoral Zone - 1' to 2' deep Zone 2 = Deeper Zone - 4 feet to 8 feet deep	$Zone 1 = \underbrace{0.75}_{Zone 2} feet$ $feet$
C) Maximun	n Zone 2 Pool Depth (not to exceed 12 feet)	Depth = <u>9.00</u> feet
D) Permane	nt Pool Water Surface Area (Estimated Minimum) (Zone 1 - Littoral Zone = 25% to 40% of the total surface area) (Zone 2 - Deeper Zone = 60% to 75% of the total surface area)	
	Total Estimated Minimum Surface Area (A _{Total})	% = 100.000 acres = 0.495
3. Annual/Seas	onal Water Balance (\mathbf{Q}_{net} has to be positive)	$\begin{array}{c} Q_{inflow} = & \underline{181.00} & acre-feet/year \\ Q_{evap} = & \underline{1.30} & acre-feet/year \\ Q_{seepage} = & \underline{2.10} & acre-feet/year \\ Q_{ET} = & \underline{0.80} & acre-feet/year \\ Q_{not} = & \underline{176.80} & acre-feet/year \end{array}$
4. Outlet Works		
A) Outlet Ty	pe (Check One)	Orifice Plate X Perforated Riser Pipe Other:
B) Depth at	Outlet Above Lowest Perforation (H)	H = <u>4.00</u> feet
C) Required	Maximum Outlet Area per Row, (A _o)	A _o = <u>2.50</u> square inches
i) Circul	on Dimensions (enter one only) : ar Perforation Diameter OR	D = <u>1.1880</u> inches, OR
	ght Rectangular Perforation Width	W =inches
E) NUMBER	of Columns (nc)	nc = <u>2</u> Number

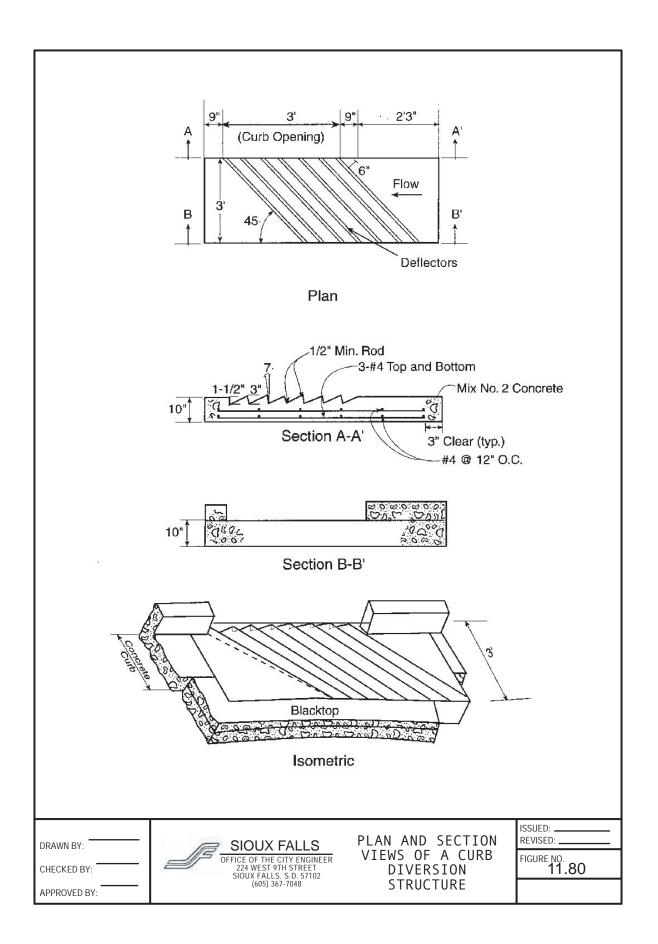

		(Sheet 2 o
Designer: Company:		
Date:		
Project: Location:		
F) Actual Des	sign Outlet Area per Row (A _o)	$A_o = 2.22$ square inches
G) Number of	Rows (nr)	nr = <u>12</u> Number
H) Total Outle	et Area (A _{ot})	A _{ot} = <u>26.60</u> square inches
5. Trash Rack		
A) Needed O	pen Area: $A_t = 0.5$ * (Figure 11.57 Value) * A_{ot}	A _t = <u>884</u> square inches
B) Type of Ou	utlet Opening (Check One)	X < 2" Diameter Round
		2" High <u>Rectangular</u> Other:
() For 2" or 9	Smaller, Round Opening (Ref.: Figure 11.50b):	
	Trash Rack and Concrete Opening	W _{conc} = 24 inches
(W _{conc})	from Table 11.13a of Trash Rack Screen (H_{TR}) H	$_{\rm TR} = 72$ inches
	Screen (Based on Depth H), Describe if "Other"	X S.S. #93 VEE Wire (US Filter)
iii) Type of c		Other:
iv) Screen (Dpening Slot Dimension, Describe if "Other"	X 0.139" (US Filter)
		Other:
v) Spacing	of Support Rod (O.C.)	1 inches
Type a	nd Size of Support Rod (Ref.: Table 11.13b)	<u>TE 0.074 in. x 0.75 in.</u>
	nd Size of Holding Frame (Ref.: Table 11.13b)	1.00 in. x 1.50 in. angle
	h Rectangular Opening (Refer to Figure 11.50a):	
	Rectangular Opening form 4.D.ii. (W)	W =inches
	Perforated Plate Opening (W _{conc} = W + 12")	W _{conc} =inches
	Trash Rack Opening (W _{opening}) from Table 11.14a	W _{opening} = inches
	f Trash Rack Screen (H _{TR}) H	
v) Type of	Screen (based on depth H) (Describe if "Other")	Klemp [™] KPP Series Aluminum Other:
	oar Spacing (Based on Table 11.14a, Klemp [™] KPP)). Describe if "Other"	inches Other:

Design Procedure Form: Retention Pond (RP) -	Sedime	ntation Facility
Designer: Company: Date: Project: Location:		(Sheet 3
vii) Minimum Bearing Bar Size (Klemp [™] Series, Table 11.14b) (Base on depth of WQCV surcharge)		
6. Basin length to width ratio		(L/W)
7. Basin Side Slopes (Z:1)		
A) Above the Permanent Pool:B) Below the Permanent Pool	Z= Z= Z=	5.0 (horizontal/vertical) Zone 1= 5.0 (horizontal/vertical) Zone 2= 3.0 (horizontal/vertical)
8. Dam Embankment Side Slopes	Z=	4.0 (horizontal/vertical)
9. Vegetation (Check the type used or describe if "Other")		Native Grass X Irrigated Turf Grass Emergent Aquatic Species* Other: Decify types and densities:
10. Forebay Storage (5% to 10% of Design Volume in 1D, or 0.0866 to 0.1733 acre-feet.)	5	Storage = <u>0.12</u> acre-feet
11. Underdrains		Yes yes/no
Notes:		
SIOUX FALLS		PROCEDURE ISSUED: REVISED: ETENTION EICURE NO.




Designer:				
Company:				
Project:				
Location:				
1. Design Discharge (total)		Q ₂ = <u>200</u> cfs		
		Q ₁₀₀ = cfs		
2. Channel Geometry (New Channel - No Wetland Veg. in Bottom)				
A) Channel Side Slopes (Z:1, i.e., H/V) $(Z \ge 2.5)$		Z = <u>3.0</u> (horizontal/vertical)		
B) 2-Year Design Flow Depth (D ₂) D Maximum D ₂ = 4', Minimum D ₂ = 2'		₂ = <u>4.0</u> feet		
C) Bottom width of the channel (B_2) - 8-foot minimum		B ₂ = <u>13.0</u> feet		
D) Top width of the 2-Year Design Water Surface $\left(W_{2}\right)$	W	₂ = <u>37.0</u> feet		
 Longitudinal Slope (Based on a Manning's n = 0.03 for the 2-year Channel, velocity set to 2 fps) 		S = <u>0.0005</u> feet/feet		
 Final Channel Goemetry - Wetland Vegetation in Bottom) (Based on a Manning's n = 0.08) 		Z = 3.0 feet		
 A) Calculated channel geometry required to maintain design discharge during a 2-year event with mature vegetation 		$D_2 = \frac{3.0}{4.0}$ feet $B_2 = \frac{40.5}{100}$ feet		
B) Calculated discharge and velocity		$W_2 = \frac{70.5}{Q_2 = 200.0}$ feet		
during a 2-year event with mature vegetation		$V_2 = 0.9$ fps		
C) Geometry and velocity to use for the 100-year discharge if composite channel section is used.		$D_{100} = 10.2 \text{ feet} \\ B_{100} = 43.5 \text{ feet} \\ W_{100} = 126.2 \text{ feet}$		
		$V_{100} = \frac{120.2}{2.2}$ fps		
5. Number of grade control structures required		number		
6. Vegetation (Check the type or describe "Other")		X Native Grass		
		Irrigated Turf Grass X Wetland Species Other:		
Notes:				
	DESIG	N PROCEDURE		




Bioretentic	Grass/Bioretention Plants		Gabion 3'-0" btextile Id slope
DRAWN BY: CHECKED BY: APPROVED BY:	SIOUX FALLS OFFICE OF THE CITY ENGINEER 224 WEST 9TH STREET SIOUX FALLS, S.D. 57102 (605) 367-7048	BIORETENTION CROSS SECTION	REVISED: FIGURE NO. 11.75

	Control Structure Perimeter Splash Bi Rip-Rap	Sedges ar Nock Sand Filter Area Sa	Nus Plants, Ind Grasses Wetland Trees and Shrubs	Mound Area pe Height - 18"-24" E)	kisting Soil
small storms is div	erted at the control rip rap. The stormu a.	n large storms is bypas ! structure (manhole). ' pater is filtered throug SIOUX FALLS	The energy of the stor	mwater flow is di	ssipated by the

